
1. Ordering

Definition 1.1. A continuum is a nonempty set C together with a relation <, which
satisfies the following axioms:

OA1: For all x, y ∈ C such that x 6= y, either x < y or y < x.
OA2: For all x, y ∈ C, if x < y then x 6= y.
OA3: For all x, y, z ∈ C, if x < y and y < z then x < z.

IA: C has no first or last points. (See Definition 1.2)
CA: C is connected. (See Definition 4.1)

A relation which satisfies axioms OA1-3 is called an ordering. Technically the “or”
which appears in OA1 is an inclusive or, but the next proposition shows that it is
secretly the exclusive or.

Proposition 1.1. If x and y are points of C, then x < y and y < x are not both
true.

The next definition explains the meaning of IA.

Definition 1.2. If A ⊆ C, then a point a ∈ A is a first point of A if, for every
element x ∈ A, either a < x or a = x. Similarly, a point b ∈ A is called a last point
of A if, for every x ∈ A, either x < b or x = b.

Lemma 1.2. If A is a nonempty, finite subset of C, then A has a first and last point.

Proposition 1.3. Suppose that A is a set of n distinct points in C. Then symbols
a1, . . . , an may be assigned to each point of A so that a1 < a2 < · · · < an, i.e. ai < ai+1

for 1 ≤ i ≤ n− 1.

Definition 1.3. If x, y, z ∈ C and both x < y and y < z, then we say that y is
between x and z.

Corollary 1.4. Of three distinct points, one must be between the other two.

Definition 1.4. If a, b ∈ C and a < b, then the open interval (a, b) is defined by

(a, b) = {x ∈ C|a < x < b}.

The closed interval [a, b] is defined by

[a, b] = {x ∈ C|a < x < b}.

Proposition 1.5. If x is a point of C, then there exists an open interval (a, b) such
that x ∈ (a, b).

2. Limit Points

Definition 2.1. Let A be a nonempty subset of C. A point p of C is called a limit point
of A if every open interval I containing p has nonempty intersection with A \ {p}.
Explicitly, this means:

for every open interval I with p ∈ I, we have I ∩ (A \ {p}) 6= ∅.
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Notice that we do not require that a limit point p of A be an element of A.

Remark: Note that p is not a limit point of A if there exists an open interval (a, b)
such that p ∈ (a, b) and (a, b) ∩ A \ {p} = ∅.

Proposition 2.1. If p is a limit point of A and A ⊂ B, then p is a limit point of B.

Lemma 2.2. Suppose (a, b) is an open interval. Define the exterior of (a, b) to be
the set C \ [a, b]. Then no point in the exterior of (a, b) is a limit point of (a, b), and
no point of (a, b) is a limit point of the exterior of (a, b).

Proposition 2.3. If two open intervals have a point x in common, their intersection
is an open interval containing x.

Corollary 2.4. If n open intervals have a point x in common, their intersection is
an open interval containing x.

Theorem 2.5 (*). Let A,B ⊂ C. If p is a limit point of A ∪ B, then p is a limit
point of A or B.

Corollary 2.6. Let A1, . . . , An be n subsets of C. Then p is a limit point of A1 ∪
· · · ∪ An if and only if p is a limit point of at least one of the sets Ak.

Proposition 2.7. If p and q are distinct points of C, then there exist disjoint open
intervals I1 and I2 containing p and q, respectively.

Corollary 2.8. A subset of C consisting of one point has no limit points.

Corollary 2.9. A finite subset A ⊂ C has no limit points.

Corollary 2.10. If A ⊂ C is finite and x ∈ A, then there exists an open interval I
such that A ∩ I = {x}.

Proposition 2.11. If p is a limit point of A and I is an open interval containing p,
then the set I ∩ A is infinite.

3. Topology

Definition 3.1. A subset of C is closed if it contains all of its limit points.

Theorem 3.1. The sets ∅ and C are closed. Moreover a subset of C containing a
finite number of points is closed.

Definition 3.2. Let X be a subset of C. The closure of X is the subset X of C
defined by:

X = X ∪ {x ∈ C | x is a limit point of X}.

Proposition 3.2. X ⊂ C is closed if and only if X = X.

Proposition 3.3. The closure of X ⊂ C satisfies X = X.

Corollary 3.4. Given any subset X ⊂ C, the closure X is closed.

Definition 3.3. A subset U of C is open if its complement C \ U is closed.
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Theorem 3.5 (*). Let U ⊂ C. Then U is open if and only if for all x ∈ U , there
exists an open interval I such that x ∈ I ⊂ U .

Corollary 3.6. Every open interval is open. Every complement of an open interval
is closed. Moreover ∅ and C are open.

Theorem 3.7. Let {Uλ} be an arbitrary collection of open subsets of C. Then the
union

⋃
λ Uλ is open.

Corollary 3.8. Let {Xλ} be an arbitrary collection of closed subsets of C. Then the
intersection

⋂
λXλ is closed.

Theorem 3.9. Let U be a nonempty open set. Then U is the union of a collection
of open intervals.

Theorem 3.10. Let U1, . . . , Un be a finite collection of open subsets C. Then the
intersection U1 ∩ · · · ∩ Un is open.

Corollary 3.11. Let X1, . . . , Xn be a finite collection of closed subsets of C. Then
the union X1 ∪ · · · ∪Xn is closed.

Definition 3.4. Let X be any set. A topology on X is a collection T of subsets of
X that satisfy the following properties:

(1) X and ∅ are elements of T .
(2) The union of an arbitrary collection of sets in T is also in T .
(3) The intersection of a finite number of sets in T is also in T .

The elements of T are called the open sets of X. The set X with the structure of the
topology T is called a topological space1.

4. Connectedness

Definition 4.1. Suppose X ⊆ C. We say X is disconnected if there exist open sets
A,B ⊂ C such that

X ⊆ A ∪B

A ∩B = ∅
A ∩X,B ∩X 6= ∅.

We say X is connected if it is not disconnected.

Proposition 4.1. The only subsets of C that are both open and closed are ∅ and C.

Theorem 4.2. For all x, y ∈ C, if x < y, then there exists z ∈ C such that z is in
between x and y.

Corollary 4.3. Every open interval is infinite.

Corollary 4.4. Every point of C is a limit point of C.

Corollary 4.5. Every point of (a, b) is a limit point of (a, b).

1The word topology comes from the Greek word topos (τ óπoζ), which means “place”.
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Definition 4.2. Let X be a subset of C. A point u is called an upper bound of X if
for all x ∈ X, x ≤ u. A point l is called a lower bound of X if for all x ∈ X, l ≤ x.
If there exists an upper bound of X, then we say that X is bounded above. If there
exists a lower bound of X, then we say that X is bounded below. If X is bounded
above and below, then we simply say that X is bounded.

Definition 4.3. Let X be a subset of C. We say that u is the least upper bound of
X and write u = supX if:

(1) u is an upper bound of X, and
(2) if u′ is an upper bound of X, then u ≤ u′.

We say that l is the greatest lower bound and write l = inf X if:

(1) l is a lower bound of X, and
(2) if l′ is a lower bound of X, then l′ ≤ l.

Lemma 4.6 (*). Let X ⊂ C and define:

Ψ(X) = {x ∈ C | x is not an upper bound of X}
and

Ω(X) = {x ∈ C | x is not a lower bound of X}.
Then Ψ(X) and Ω(X) are open.

Theorem 4.7 (*). Suppose that X is nonempty and bounded. Then supX and inf X
both exist.

Theorem 4.8 (*). Let X be a subset of C. Suppose that supX exists and supX /∈ X.
Then supX is a limit point of X. The same holds for inf X.

Corollary 4.9. Both a and b are limit points of (a, b).

Corollary 4.10. Every nonempty closed and bounded set has a first point and a last
point.

Theorem 4.11. Every closed interval [a, b] is connected.

5. Continuity

Definition 5.1. If f : A→ B, and X ⊂ B then the preimage of X is the set

f−1(X) = {a ∈ A|f(a) ∈ X}.

Lemma 5.1. Suppose f : A→ B, and X, Y ⊂ B. Then

f−1(X ∪ Y ) = f−1(X) ∪ f−1(Y ) and f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y )

Lemma 5.2. Suppose f : A→ B, and X, Y ⊂ A. Then

f(X ∩ Y ) ⊆ f(X) ∩ f(Y ).

Definition 5.2. A function f : C → C is continuous if for every open set U ⊂ C, the
preimage f−1(U) is open.

Theorem 5.3 (*). Suppose that X ⊆ C is a connected subset of C and f : C → C is
continuous. Then f(X) is connected.
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Corollary 5.4 (Intermediate Value Theorem). Suppose f : C → C is continuous,
and [a, b] ⊂ C is a nonempty closed interval. Then if y is between f(a) and f(b) then
there exists c ∈ [a, b] such that f(c) = y.

Theorem 5.5 (*). f : C → C is continuous if and only if for all x ∈ C and every
open interval I1 containing f(x), there exists an open interval I2 containing x such
that f(I2) ⊂ I1.

Theorem 5.6. Let f : C → C be continuous and suppose that x is a limit point of
A ⊆ C. Then f(x) is a limit point of f(A) or f(x) ∈ f(A).

6. Compactness

Definition 6.1. Let X ⊂ C, and suppose O = {Uλ} is a collection subsets of C. We
say O is an open cover of R if i) every Uλ is open and ii)

X ⊂
⋃
λ

Uλ.

Definition 6.2. Let X be a subset of C. X is compact if for every open cover O of
X, there exists a finite subset O′ ⊂ O that is also an open cover.

Proposition 6.1. Any finite subset of C is compact.

Proposition 6.2. C is not compact.

Theorem 6.3 (*). If X is compact, then X is bounded.

Lemma 6.4. Let p ∈ C and consider the set:

O = {ext (a, b) | p ∈ (a, b)}.
No finite subset of O covers C \ {p}.

Proposition 6.5. No open interval (a, b) is compact.

Theorem 6.6. If X is compact, then X is closed.

Proposition 6.7. The set [a, b] is compact.

Theorem 6.8 (Heine-Borel). Let X ⊂ C. X is compact if and only if X is closed
and bounded.

Theorem 6.9 (*). Suppose X ⊂ C is compact, and f : C → C is continuous. Then
f(X) is compact.

Corollary 6.10 (Extreme Value Theorem). Suppose f : C → C is continuous, and
[a, b] is a closed interval. Then f [a, b] has a maximum and a minimum.

Theorem 6.11 (Bolzano-Weierstrass*). Every bounded infinite subset of C has at
least one limit point.


