1. Ordering

Definition 1.1. A continuum is a nonempty set C together with a relation <, which satisfies the following axioms:

OA1: For all $x, y \in \mathcal{C}$ such that $x \neq y$, either x < y or y < x.

OA2: For all $x, y \in C$, if x < y then $x \neq y$.

- OA3: For all $x, y, z \in C$, if x < y and y < z then x < z.
- IA: C has no first or last points. (See Definition 1.2)
- CA: C is connected. (See Definition 4.1)

A relation which satisfies axioms OA1-3 is called an *ordering*. Technically the "or" which appears in OA1 is an inclusive or, but the next proposition shows that it is secretly the exclusive or.

Proposition 1.1. If x and y are points of C, then x < y and y < x are not both true.

The next definition explains the meaning of IA.

Definition 1.2. If $A \subseteq C$, then a point $a \in A$ is a first point of A if, for every element $x \in A$, either a < x or a = x. Similarly, a point $b \in A$ is called a last point of A if, for every $x \in A$, either x < b or x = b.

Lemma 1.2. If A is a nonempty, finite subset of C, then A has a first and last point.

Proposition 1.3. Suppose that A is a set of n distinct points in C. Then symbols a_1, \ldots, a_n may be assigned to each point of A so that $a_1 < a_2 < \cdots < a_n$, i.e. $a_i < a_{i+1}$ for $1 \le i \le n-1$.

Definition 1.3. If $x, y, z \in C$ and both x < y and y < z, then we say that y is between x and z.

Corollary 1.4. Of three distinct points, one must be between the other two.

Definition 1.4. If $a, b \in C$ and a < b, then the open interval (a, b) is defined by

 $(a,b) = \{ x \in \mathcal{C} | a < x < b \}.$

The closed interval [a, b] is defined by

$$[a, b] = \{ x \in \mathcal{C} | a < x < b \}.$$

Proposition 1.5. If x is a point of C, then there exists an open interval (a, b) such that $x \in (a, b)$.

2. Limit Points

Definition 2.1. Let A be a nonempty subset of C. A point p of C is called a limit point of A if every open interval I containing p has nonempty intersection with $A \setminus \{p\}$. Explicitly, this means:

for every open interval I with $p \in I$, we have $I \cap (A \setminus \{p\}) \neq \emptyset$.

Notice that we do not require that a limit point p of A be an element of A.

Remark: Note that p is not a limit point of A if there exists an open interval (a, b) such that $p \in (a, b)$ and $(a, b) \cap A \setminus \{p\} = \emptyset$.

Proposition 2.1. If p is a limit point of A and $A \subset B$, then p is a limit point of B.

Lemma 2.2. Suppose (a, b) is an open interval. Define the exterior of (a, b) to be the set $C \setminus [a, b]$. Then no point in the exterior of (a, b) is a limit point of (a, b), and no point of (a, b) is a limit point of the exterior of (a, b).

Proposition 2.3. If two open intervals have a point x in common, their intersection is an open interval containing x.

Corollary 2.4. If n open intervals have a point x in common, their intersection is an open interval containing x.

Theorem 2.5 (*). Let $A, B \subset C$. If p is a limit point of $A \cup B$, then p is a limit point of A or B.

Corollary 2.6. Let A_1, \ldots, A_n be n subsets of C. Then p is a limit point of $A_1 \cup \cdots \cup A_n$ if and only if p is a limit point of at least one of the sets A_k .

Proposition 2.7. If p and q are distinct points of C, then there exist disjoint open intervals I_1 and I_2 containing p and q, respectively.

Corollary 2.8. A subset of C consisting of one point has no limit points.

Corollary 2.9. A finite subset $A \subset C$ has no limit points.

Corollary 2.10. If $A \subset C$ is finite and $x \in A$, then there exists an open interval I such that $A \cap I = \{x\}$.

Proposition 2.11. If p is a limit point of A and I is an open interval containing p, then the set $I \cap A$ is infinite.

3. TOPOLOGY

Definition 3.1. A subset of C is closed if it contains all of its limit points.

Theorem 3.1. The sets \varnothing and C are closed. Moreover a subset of C containing a finite number of points is closed.

Definition 3.2. Let X be a subset of C. The closure of X is the subset \overline{X} of C defined by:

 $\overline{X} = X \cup \{ x \in \mathcal{C} \mid x \text{ is a limit point of } X \}.$

Proposition 3.2. $X \subset C$ is closed if and only if $X = \overline{X}$.

Proposition 3.3. The closure of $X \subset \mathcal{C}$ satisfies $\overline{X} = \overline{\overline{X}}$.

Corollary 3.4. Given any subset $X \subset C$, the closure \overline{X} is closed.

Definition 3.3. A subset U of C is open if its complement $C \setminus U$ is closed.

Theorem 3.5 (*). Let $U \subset C$. Then U is open if and only if for all $x \in U$, there exists an open interval I such that $x \in I \subset U$.

Corollary 3.6. Every open interval is open. Every complement of an open interval is closed. Moreover \emptyset and C are open.

Theorem 3.7. Let $\{U_{\lambda}\}$ be an arbitrary collection of open subsets of C. Then the union $\bigcup_{\lambda} U_{\lambda}$ is open.

Corollary 3.8. Let $\{X_{\lambda}\}$ be an arbitrary collection of closed subsets of C. Then the intersection $\bigcap_{\lambda} X_{\lambda}$ is closed.

Theorem 3.9. Let U be a nonempty open set. Then U is the union of a collection of open intervals.

Theorem 3.10. Let U_1, \ldots, U_n be a finite collection of open subsets C. Then the intersection $U_1 \cap \cdots \cap U_n$ is open.

Corollary 3.11. Let X_1, \ldots, X_n be a finite collection of closed subsets of C. Then the union $X_1 \cup \cdots \cup X_n$ is closed.

Definition 3.4. Let X be any set. A topology on X is a collection \mathcal{T} of subsets of X that satisfy the following properties:

- (1) X and \varnothing are elements of \mathcal{T} .
- (2) The union of an arbitrary collection of sets in \mathcal{T} is also in \mathcal{T} .
- (3) The intersection of a finite number of sets in \mathcal{T} is also in \mathcal{T} .

The elements of \mathcal{T} are called the open sets of X. The set X with the structure of the topology \mathcal{T} is called a topological space¹.

4. Connectedness

Definition 4.1. Suppose $X \subseteq C$. We say X is disconnected if there exist open sets $A, B \subset C$ such that

$$\begin{array}{rcl} X & \subseteq & A \cup B \\ A \cap B & = & \varnothing \\ A \cap X, B \cap X & \neq & \varnothing. \end{array}$$

We say X is connected if it is not disconnected.

Proposition 4.1. The only subsets of C that are both open and closed are \emptyset and C.

Theorem 4.2. For all $x, y \in C$, if x < y, then there exists $z \in C$ such that z is in between x and y.

Corollary 4.3. Every open interval is infinite.

Corollary 4.4. Every point of C is a limit point of C.

Corollary 4.5. Every point of (a, b) is a limit point of (a, b).

¹The word topology comes from the Greek word topos ($\tau \delta \pi o \zeta$), which means "place".

4

Definition 4.2. Let X be a subset of C. A point u is called an upper bound of X if for all $x \in X$, $x \leq u$. A point l is called a lower bound of X if for all $x \in X$, $l \leq x$. If there exists an upper bound of X, then we say that X is bounded above. If there exists a lower bound of X, then we say that X is bounded below. If X is bounded above and below, then we simply say that X is bounded.

Definition 4.3. Let X be a subset of C. We say that u is the least upper bound of X and write $u = \sup X$ if:

- (1) u is an upper bound of X, and
- (2) if u' is an upper bound of X, then $u \leq u'$.

We say that l is the greatest lower bound and write $l = \inf X$ if:

- (1) l is a lower bound of X, and
- (2) if l' is a lower bound of X, then $l' \leq l$.

Lemma 4.6 (*). Let $X \subset C$ and define:

 $\Psi(X) = \{ x \in \mathcal{C} \mid x \text{ is not an upper bound of } X \}$

and

 $\Omega(X) = \{ x \in \mathcal{C} \mid x \text{ is not a lower bound of } X \}.$

Then $\Psi(X)$ and $\Omega(X)$ are open.

Theorem 4.7 (*). Suppose that X is nonempty and bounded. Then $\sup X$ and $\inf X$ both exist.

Theorem 4.8 (*). Let X be a subset of C. Suppose that $\sup X$ exists and $\sup X \notin X$. Then $\sup X$ is a limit point of X. The same holds for $\inf X$.

Corollary 4.9. Both a and b are limit points of (a, b).

Corollary 4.10. Every nonempty closed and bounded set has a first point and a last point.

Theorem 4.11. Every closed interval [a, b] is connected.

5. Continuity

Definition 5.1. If $f : A \to B$, and $X \subset B$ then the preimage of X is the set $f^{-1}(X) = \{a \in A | f(a) \in X\}.$

Lemma 5.1. Suppose $f : A \to B$, and $X, Y \subset B$. Then

$$f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$$
 and $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$

Lemma 5.2. Suppose $f : A \to B$, and $X, Y \subset A$. Then $f(X \cap Y) \subseteq f(X) \cap f(Y)$.

Definition 5.2. A function $f : \mathcal{C} \to \mathcal{C}$ is continuous if for every open set $U \subset \mathcal{C}$, the preimage $f^{-1}(U)$ is open.

Theorem 5.3 (*). Suppose that $X \subseteq C$ is a connected subset of C and $f : C \to C$ is continuous. Then f(X) is connected.

Corollary 5.4 (Intermediate Value Theorem). Suppose $f : \mathcal{C} \to \mathcal{C}$ is continuous, and $[a,b] \subset \mathcal{C}$ is a nonempty closed interval. Then if y is between f(a) and f(b) then there exists $c \in [a,b]$ such that f(c) = y.

Theorem 5.5 (*). $f : C \to C$ is continuous if and only if for all $x \in C$ and every open interval I_1 containing f(x), there exists an open interval I_2 containing x such that $f(I_2) \subset I_1$.

Theorem 5.6. Let $f : C \to C$ be continuous and suppose that x is a limit point of $A \subseteq C$. Then f(x) is a limit point of f(A) or $f(x) \in f(A)$.

6. Compactness

Definition 6.1. Let $X \subset C$, and suppose $\mathcal{O} = \{U_{\lambda}\}$ is a collection subsets of C. We say \mathcal{O} is an open cover of \mathbb{R} if i) every U_{λ} is open and ii)

$$X \subset \bigcup_{\lambda} U_{\lambda}.$$

Definition 6.2. Let X be a subset of C. X is compact if for every open cover \mathcal{O} of X, there exists a finite subset $\mathcal{O}' \subset \mathcal{O}$ that is also an open cover.

Proposition 6.1. Any finite subset of C is compact.

Proposition 6.2. C is not compact.

Theorem 6.3 (*). If X is compact, then X is bounded.

Lemma 6.4. Let $p \in C$ and consider the set:

 $\mathcal{O} = \{ \text{ext} (a, b) \mid p \in (a, b) \}.$

No finite subset of \mathcal{O} covers $\mathcal{C} \setminus \{p\}$.

Proposition 6.5. No open interval (a, b) is compact.

Theorem 6.6. If X is compact, then X is closed.

Proposition 6.7. The set [a, b] is compact.

Theorem 6.8 (Heine-Borel). Let $X \subset C$. X is compact if and only if X is closed and bounded.

Theorem 6.9 (*). Suppose $X \subset C$ is compact, and $f : C \to C$ is continuous. Then f(X) is compact.

Corollary 6.10 (Extreme Value Theorem). Suppose $f : \mathcal{C} \to \mathcal{C}$ is continuous, and [a, b] is a closed interval. Then f[a, b] has a maximum and a minimum.

Theorem 6.11 (Bolzano-Weierstrass^{*}). Every bounded infinite subset of C has at least one limit point.