1. L'Hôpital's Rule

Theorem 1.1. Suppose $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$, and

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} \text { exists. }
$$

Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Proof. First note that we can redefine $f(a)=g(a)=0$ without changing anything in the statement of the theorem, since none of the limits in the statement are affected by the value of f or g at a. Note also that if we make this redefinition then f and g are continuous at a.

Now set

$$
L=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Let $\varepsilon>0$. Then there exists $\delta>0$ such that

$$
\begin{equation*}
\text { if } 0<|x-a|<\delta \text { then }\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\epsilon \tag{1.1}
\end{equation*}
$$

Note that implicit in this statement is the fact that in the set

$$
J=\{x|0<|x-a|<\delta\},
$$

the quantity $\frac{f^{\prime}(x)}{g^{\prime}(x)}$ is defined. In particular, f and g are differentiable on J and $g^{\prime}(x) \neq 0$ on J.

Ok. Now suppose that $0<|y-a|<\delta$. Then either $y \in(a, a+\delta)$ or $y \in(a-\delta, a)$. Suppose $y \in(a, a+\delta)$; the proof for the other case is similar. Since $(a, y] \subset J$, it follows that f and g are differentiable on (a, y) and continuous on $(a, y]$. Moreover f and g are continuous at a, so f and g are continuous on $[a, y]$.

Therefore the Cauchy Mean Value Theorem applies to f and g on the interval $[a, y]$, and so there exists $c \in(a, y)$ such that

$$
f^{\prime}(c)(g(y)-g(a))=g^{\prime}(c)(f(y)-f(a)) .
$$

Since $g(a)=f(a)=0$, we have

$$
\begin{equation*}
f^{\prime}(c) g(y)=g^{\prime}(c) f(y) \tag{1.2}
\end{equation*}
$$

Now $c \in(a, y) \subset(a, a+\delta) \subset J$, so the commentary after (1.1) implies that $g^{\prime}(c) \neq 0$. Moreover if $g(y)=0$, then applying the Mean Value Theorem to g between a and y implies that $g^{\prime}(x)=0$ for some $x \in(a, y) \subset(a, a+\delta) \subset J$, which contradicts the commentary after (1.1). Therefore $g(y) \neq 0$. Therefore we can divide (1.2) by $g^{\prime}(c)$ and $g(y)$, to get

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(y)}{g(y)}
$$

Then

$$
\left|\frac{f(y)}{g(y)}-L\right|=\left|\frac{f^{\prime}(c)}{g^{\prime}(c)}-L\right|<\varepsilon,
$$

where the inequality on the right follows from (1.1) and the fact that $c \in(a, y) \subset(a, a+\delta)$.
Therefore

$$
\text { if } 0<|y-a|<\delta \text { then }\left|\frac{f(y)}{g(y)}-L\right|<\epsilon
$$

which finishes the proof.

