MA 575 MIDTERM EXAM.

October 6 2017

Name: _____

Problem 1. Suppose $X \subset \mathcal{C}$ has a supremum. Show that $\sup(X) = \sup(\overline{X})$.

Problem 2. Suppose $f : \mathcal{C} \to \mathcal{C}$ such that f(X) is connected for each $X \subset \mathcal{C}$. Does it follow that f is continuous? Justify your answer.

Problem 3. Suppose X is compact and $f : \mathcal{C} \to \mathcal{C}$ is continuous. Show that f(X) is compact.

Problem 4. We define X to be dense in C if every nonempty open set in C contains some $x \in X$.

Suppose X is dense in C and $f : C \to C$ is continuous, with f(x) = c for all $x \in X$. Show that f(x) = c for all $x \in C$. **Problem 5.** Suppose $\{[a_j, b_j]\}_{j \in \mathbb{N}}$ is a collection of non-empty closed intervals such that $[a_{j+1}, b_{j+1}] \subseteq [a_j, b_j]$. Show that there exists x such that $x \in \bigcap_{j \in \mathbb{N}} [a_j, b_j]$.

Extra Space