MA 575 Midterm Exam.
November 102017

Name:

Problem 1. Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$. Show that $\lim _{x \rightarrow a} g(x)$ exists and is also equal to L.

Problem 2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that $|f(x)| \leq x^{2}$ for all $x \in \mathbb{R}$. Show that f is differentiable at 0 .

Problem 3. Suppose f is continuous on $[0, \infty)$ and

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

for some $L \in \mathbb{R}$. Show that f is bounded on $[0, \infty)$.

Problem 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous everywhere and for all $a, b \in \mathbb{R}$,

$$
\int_{a}^{b} f(t) d t=0
$$

Show that $f(t)=0$ for all t.

Problem 5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing on $[0,1]$; in other words if $x, y \in[0,1]$ with $x \leq y$ then $f(x) \leq f(y)$. Show that f is integrable on $[0,1]$.

Extra Space

