MA 575 MIDTERM EXAM.

November 10 2017

Name: _____

Problem 1. Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$ and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$. Show that $\lim_{x \to a} g(x)$ exists and is also equal to L. **Problem 2.** Suppose $f : \mathbb{R} \to \mathbb{R}$ has the property that $|f(x)| \leq x^2$ for all $x \in \mathbb{R}$. Show that f is differentiable at 0.

Problem 3. Suppose f is continuous on $[0, \infty)$ and $\lim_{x \to \infty} f(x) = L$

for some $L \in \mathbb{R}$. Show that f is bounded on $[0, \infty)$.

Problem 4. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous everywhere and for all $a, b \in \mathbb{R}$,

$$\int_{a}^{b} f(t)dt = 0.$$

Show that f(t) = 0 for all t.

Problem 5. Suppose $f : \mathbb{R} \to \mathbb{R}$ is nondecreasing on [0, 1]; in other words if $x, y \in [0, 1]$ with $x \leq y$ then $f(x) \leq f(y)$. Show that f is integrable on [0, 1].

Extra Space