MA 575 Midterm Exam.
November 102017

Name:

Problem 1. Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$ and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$. Show that $\lim _{x \rightarrow a} g(x)$ exists and is also equal to L.

Proof: Let $\varepsilon>0$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta_{1}>0$ such that if $0<|x-a|<\delta_{1}$, then $|f(x)-L|<\varepsilon$. Similarly, since $\lim _{x \rightarrow a} h(x)=L$, there exists $\delta_{2}>0$ such that if $0<|x-a|<\delta_{2}$, then $|h(x)-L|<\varepsilon$.

Set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Now if $x \in \mathbb{R}$ such that $0<|x-a|<\delta$, then $0<|x-a|<\delta_{1}$ and $0<|x-a|<\delta_{2}$, so

$$
|f(x)-L|<\varepsilon \quad \text { and }|h(x)-L|<\varepsilon
$$

In other words

$$
L-\varepsilon<f(x)<L+\varepsilon \quad \text { and } L-\varepsilon<h(x)<L+\varepsilon
$$

Now $f(x) \leq g(x) \leq h(x)$, so it follows that

$$
L-\varepsilon<f(x) \leq g(x) \leq h(x)<L+\varepsilon
$$

Therefore

$$
|g(x)-L|<\varepsilon,
$$

and so we showed that if $0<|x-a|<\delta$ then $|g(x)-L|<\varepsilon$.

Problem 2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that $|f(x)| \leq x^{2}$ for all $x \in \mathbb{R}$. Show that f is differentiable at 0 .

Proof: Notice that in particular $|f(0)| \leq 0^{2}$, so $f(0)=0$. Now

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)}{h} .
\end{aligned}
$$

Since $|f(h)| \leq h^{2}$, it follows that

$$
-h \leq \frac{f(h)}{h} \leq h \quad \text { for } h>0
$$

and

$$
-h \leq \frac{f(h)}{h} \leq-h \quad \text { for } h<0
$$

Therefore for all $h \neq 0$

$$
-|h| \leq \frac{f(h)}{h} \leq|h|
$$

and it follows from the squeeze theorem that

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)}{h}=0 .
$$

Problem 3. Suppose f is continuous on $[0, \infty)$ and

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

for some $L \in \mathbb{R}$. Show that f is bounded on $[0, \infty)$.
Proof: Since $\lim _{x \rightarrow \infty} f(x)=L$, there exists N such that if $x>N$ then $|f(x)-L|<1$. In other words, if $x>N$ then $L-1<f(x)<L+1$.

Now f is continuous on $[0, N]$, so by the extreme value theorem, there exists m and M such that

$$
m \leq f(x) \leq M \quad \text { for all } x \in[0, N]
$$

Now take $q=\min \{m, L-1\}$ and $Q=\max \{M, L+1\}$. Then if $x \in[0, \infty)$ then either $x \in[0, N]$ and $q \leq m \leq f(x) \leq M \leq Q$ or $x \in(N, \infty)$ and $q \leq L-1 \leq f(x) \leq L+1 \leq Q$. Therefore f is bounded on $[0, \infty)$ below by q and above by Q.

Problem 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous everywhere and for all $a, b \in \mathbb{R}$,

$$
\int_{a}^{b} f(t) d t=0
$$

Show that $f(t)=0$ for all t.

Proof 1: Suppose there exists t_{0} such that $f\left(t_{0}\right)>0$. Then there exists $\delta>0$ such that for all t such that $\left|t-t_{0}\right|<\delta$, we have $\left|f(t)-f\left(t_{0}\right)\right|>f\left(t_{0}\right) / 2$. Therefore for all $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$, we have $f(t)>f\left(t_{0}\right) / 2$.

Therefore

$$
\int_{t_{0}-\delta}^{t_{0}+\delta} f(t) d t \geq \delta f\left(t_{0}\right)>0
$$

and this is a contradiction.
Proof 2: Pick $a \in \mathbb{R}$ and define $F(x)=\int_{a}^{x} f(t) d t$. By the hypotheses on f, it follows that F is the zero function. Then since f is continuous, it follows from the 1st Fundamental Theorem of Calculus that $f(x)=F^{\prime}(x)=0$ for all x, so $f(x)=0$ for all x.

Problem 5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing on $[0,1]$; in other words if $x, y \in[0,1]$ with $x \leq y$ then $f(x) \leq f(y)$. Show that f is integrable on $[0,1]$.

Proof: Note that since f is nondecreasing, f is bounded above by $f(1)$ and below by $f(0)$, so f is bounded. Now let $\varepsilon>0$. Choose $n \in \mathbb{N}$ such that $n>(f(1)-f(0)) / \varepsilon$, and consider the partition $P=\{0,1 / n, 2 / n, \ldots, 1\}$.

Then

$$
\begin{aligned}
U(f, P)-L(f, P) & =\sum_{i=1}^{n} M_{i}\left(t_{i}-t_{i-1}\right)-\sum_{i=1}^{n} m_{i}\left(t_{i}-t_{i-1}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)
\end{aligned}
$$

Since f is nondecreasing, $M_{i}=\sup \left\{f(x) \mid x \in\left[t_{i-1}, t_{i}\right]\right\}=f\left(t_{i}\right)$ and $m_{i}=\inf \{f(x) \mid x \in$ $\left.\left[t_{i-1}, t_{i}\right]\right\}=f\left(t_{i-1}\right)$. Therefore

$$
U(f, P)-L(f, P)=\frac{1}{n} \sum_{i=1}^{n}\left(f\left(t_{i}\right)-f\left(t_{i-1}\right)\right)
$$

This is a telescoping sum! This gives us

$$
U(f, P)-L(f, P)=\frac{1}{n}(f(1)-f(0))<\varepsilon
$$

Therefore f is integrable.

Extra Space

