1. The Natural Numbers

Definition 1 (Definition of \mathbb{N}). The natural numbers are a set \mathbb{N} , together with a successor function $S : \mathbb{N} \to \mathbb{N}$, which satisfies the following axioms:

Axiom 1: : \mathbb{N} is nonempty, and contains an object called 0. Axiom 2: : If $n, m \in \mathbb{N}$, and $n \neq m$, then $S(n) \neq S(m)$. Axiom 3: : There is no $n \in \mathbb{N}$ such that 0 = S(n). Axiom 4: : If $A \subset \mathbb{N}$, and $0 \in A$, and for every $a \in A$, $S(a) \in A$, then $A = \mathbb{N}$.

These puppies should have their own names.

Definition 2.

$$\begin{array}{rcl}
1 &=& S(0) \\
2 &=& S(1) \\
3 &=& S(2) \\
4 &=& S(3) \ etc.
\end{array}$$

Some silly but important propositions follow.

Proposition 1.1. $4 \neq 0$.

Proposition 1.2. $1 \neq 2$.

The following requires Axiom 4.

Proposition 1.3. Suppose $n \in \mathbb{N}$. Then $n \neq S(n)$.

2. Arithmetic

We start with a recursion lemma: it tells us we can define functions recursively.

Lemma 2.1. Suppose $f : \mathbb{N} \to \mathbb{N}$, and $c \in \mathbb{N}$. There exists a unique function $g : \mathbb{N} \to \mathbb{N}$ such that

$$g(0) = c \text{ and } g(S(n)) = f(g(n)).$$

This is of enormous help in defining n + m for all natural numbers n, m simultaneously.

Definition 3. Suppose $m \in \mathbb{N}$. We define 0 + m = m. Moreover if we have defined n + m, then we define S(n) + m = S(n + m).

Another silly proposition:

Proposition 2.2. 2 + 2 = 4.

We want to show that our definition of addition behaves the way we secretly want it to behave. To start, we show that addition is commutative.

Lemma 2.3. Let $n \in \mathbb{N}$. Then n + 0 = n.

Lemma 2.4. Let $n, m \in \mathbb{N}$. Then n + S(m) = S(n+m).

Proposition 2.5. Suppose $n, m \in \mathbb{N}$. Then n + m = m + n.

Similarly we can prove associativity:

Proposition 2.6. Let $n, m, p \in \mathbb{N}$. Then n + (m + p) = (n + m) + p.

Also important is the cancellation law:

Proposition 2.7. Suppose $n, m, p \in \mathbb{N}$, and n + m = n + p. Then m = p.

While we're here we might as well spill the beans on what S is:

Proposition 2.8. Let $n \in \mathbb{N}$. Then S(n) = n + 1.

We can go on in this vein to define order (a < b), multiplication, subtraction (though this makes more sense in \mathbb{Z} – in fact you can use this to define \mathbb{Z}), etc. Some of this will be on your problem set but for the most part we're going to skip ahead past \mathbb{N} , \mathbb{Z} , and \mathbb{Q} and move on to \mathbb{R} ...