1. The Natural Numbers

Definition 1 (Definition of \mathbb{N}). The natural numbers are a set \mathbb{N}, together with a successor function $S: \mathbb{N} \rightarrow \mathbb{N}$, which satisfies the following axioms:

Axiom 1: : \mathbb{N} is nonempty, and contains an object called 0.
Axiom 2: : If $n, m \in \mathbb{N}$, and $n \neq m$, then $S(n) \neq S(m)$.
Axiom 3: : There is no $n \in \mathbb{N}$ such that $0=S(n)$.
Axiom 4: : If $A \subset \mathbb{N}$, and $0 \in A$, and for every $a \in A, S(a) \in A$, then $A=\mathbb{N}$.
These puppies should have their own names.

Definition 2.

$$
\begin{aligned}
& 1=S(0) \\
& 2=S(1) \\
& 3=S(2) \\
& 4=S(3) \text { etc. }
\end{aligned}
$$

Some silly but important propositions follow.
Proposition 1.1. $4 \neq 0$.
Proposition 1.2. $1 \neq 2$.
The following requires Axiom 4.
Proposition 1.3. Suppose $n \in \mathbb{N}$. Then $n \neq S(n)$.

2. Arithmetic

We start with a recursion lemma: it tells us we can define functions recursively.
Lemma 2.1. Suppose $f: \mathbb{N} \rightarrow \mathbb{N}$, and $c \in \mathbb{N}$. There exists a unique function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
g(0)=c \text { and } g(S(n))=f(g(n))
$$

This is of enormous help in defining $n+m$ for all natural numbers n, m simultaneously.

Definition 3. Suppose $m \in \mathbb{N}$. We define $0+m=m$. Moreover if we have defined $n+m$, then we define $S(n)+m=S(n+m)$.

Another silly proposition:
Proposition 2.2. $2+2=4$.
We want to show that our definition of addition behaves the way we secretly want it to behave. To start, we show that addition is commutative.

Lemma 2.3. Let $n \in \mathbb{N}$. Then $n+0=n$.
Lemma 2.4. Let $n, m \in \mathbb{N}$. Then $n+S(m)=S(n+m)$.

Proposition 2.5. Suppose $n, m \in \mathbb{N}$. Then $n+m=m+n$.
Similarly we can prove associativity:
Proposition 2.6. Let $n, m, p \in \mathbb{N}$. Then $n+(m+p)=(n+m)+p$.
Also important is the cancellation law:
Proposition 2.7. Suppose $n, m, p \in \mathbb{N}$, and $n+m=n+p$. Then $m=p$.
While we're here we might as well spill the beans on what S is:
Proposition 2.8. Let $n \in \mathbb{N}$. Then $S(n)=n+1$.
We can go on in this vein to define order $(a<b)$, multiplication, subtraction (though this makes more sense in \mathbb{Z} - in fact you can use this to define \mathbb{Z}), etc. Some of this will be on your problem set but for the most part we're going to skip ahead past \mathbb{N}, \mathbb{Z}, and \mathbb{Q} and move on to $\mathbb{R} \ldots$

