1. Problem Set 1

(You may use any result in the notes on the natural numbers, with the obvious exception that I expect you to prove the cancellation law by hand.)

Problem 1 (Cancellation Law). Suppose $n, m, p \in \mathbb{N}$, and n + m = n + p. Show that m = p.

Definition 1 (Order). Let $n, m \in \mathbb{N}$. We define $n \leq m$ if m = n + p for some $p \in \mathbb{N}$, and n < m if $n \leq m$ and $n \neq m$.

Problem 2. Show that if $a, b, c \in \mathbb{N}$ and $a \leq b$ and $b \leq c$ then $a \leq c$.

Problem 3. Show that if $n, m \in \mathbb{N}$ then $n \leq m$ or $m \geq n$.

Problem 4. Suppose $n, m \in \mathbb{N}$ and n < m. Show that the statement m < n is false.

Definition 2. Let $A \subset \mathbb{N}$. We say that a is a first point of A if $a \in A$, and $a \leq b$ for all $b \in A$. We say that a is a last point of A if $a \in A$ and $b \leq a$ for all $b \in A$.

Problem 5. Show that 0 is a first point of \mathbb{N} .

Problem 6. Show that every nonempty subset of \mathbb{N} has a first point.

Problem 7. Show that not every nonempty subset of \mathbb{N} has a last point.

Definition 3 (Cardinality). Let $n \in \mathbb{N}$ and A be a set. We say A has n elements (or A has cardinality n) if there exists a bijective function

$$f: A \to \{k \in \mathbb{N} | 1 \le k \le n\}.$$

We say A is finite if there exists $n \in \mathbb{N}$ such that A has cardinality n.

Definition 4 (Countability). Let A be a set. We say that A is countably infinite if there exists a bijective function

$$f: A \to \mathbb{N}.$$

We say that A is countable if it is finite or countably infinite.

Problem 8. Show that \mathbb{N} is not finite.

Problem 9. Show that $A = \{(a, b) | a, b \in \mathbb{N}\}$ is countable.