## 1. Problem Set 1

(You may use any result in the notes on the natural numbers, with the obvious exception that I expect you to prove the cancellation law by hand.)

Problem 1 (Cancellation Law). Suppose $n, m, p \in \mathbb{N}$, and $n+m=n+p$. Show that $m=p$.
Definition 1 (Order). Let $n, m \in \mathbb{N}$. We define $n \leq m$ if $m=n+p$ for some $p \in \mathbb{N}$, and $n<m$ if $n \leq m$ and $n \neq m$.
Problem 2. Show that if $a, b, c \in \mathbb{N}$ and $a \leq b$ and $b \leq c$ then $a \leq c$.
Problem 3. Show that if $n, m \in \mathbb{N}$ then $n \leq m$ or $m \geq n$.
Problem 4. Suppose $n, m \in \mathbb{N}$ and $n<m$. Show that the statement $m<n$ is false.
Definition 2. Let $A \subset \mathbb{N}$. We say that $a$ is a first point of $A$ if $a \in A$, and $a \leq b$ for all $b \in A$. We say that $a$ is a last point of $A$ if $a \in A$ and $b \leq a$ for all $b \in A$.
Problem 5. Show that 0 is a first point of $\mathbb{N}$.
Problem 6. Show that every nonempty subset of $\mathbb{N}$ has a first point.
Problem 7. Show that not every nonempty subset of $\mathbb{N}$ has a last point.
Definition 3 (Cardinality). Let $n \in \mathbb{N}$ and $A$ be a set. We say $A$ has $n$ elements (or A has cardinality $n$ ) if there exists a bijective function

$$
f: A \rightarrow\{k \in \mathbb{N} \mid 1 \leq k \leq n\} .
$$

We say $A$ is finite if there exists $n \in \mathbb{N}$ such that $A$ has cardinality $n$.
Definition 4 (Countability). Let $A$ be a set. We say that $A$ is countably infinite if there exists a bijective function

$$
f: A \rightarrow \mathbb{N}
$$

We say that $A$ is countable if it is finite or countably infinite.
Problem 8. Show that $\mathbb{N}$ is not finite.
Problem 9. Show that $A=\{(a, b) \mid a, b \in \mathbb{N}\}$ is countable.

