1. Problem Set 10

Problem 1. Suppose $\left\{a_{n}\right\}$ converges to L and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Show that $\left\{f\left(a_{n}\right)\right\}$ converges to $f(L)$.
Problem 2. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ to be a contraction map if there exists $c \in(0,1)$ such that

$$
|f(x)-f(y)|<c|x-y|
$$

for all $x, y \in \mathbb{R}$. Show that if f is a contraction map then for any $x \in \mathbb{R}$, the sequence

$$
x, f(x), f(f(x)), f(f(f(x))), \ldots
$$

converges.
Problem 3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and a contraction map. Show that there exists $x \in \mathbb{R}$ such that $f(x)=x$.
Problem 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is positive, continuous, and nonincreasing, and $\left\{a_{n}\right\}$ is the sequence given by $a_{n}=f(n)$ for all $n \in \mathbb{N}$. Show that

$$
\sum_{n=1}^{\infty} a_{n} \text { converges if and only if } \int_{1}^{\infty} f(t) d t<\infty
$$

Problem 5. Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are positive sequences, and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L \neq 0
$$

Show that $\left\{a_{n}\right\}$ is summable if and only if $\left\{b_{n}\right\}$ is summable.
Problem 6. Suppose $\left\{a_{n}\right\}$ is a positive nonincreasing sequence which converges to zero. Show that

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}
$$

converges. Hint: consider the subsequence of partial sums $s_{2}, s_{4}, s_{6}, \ldots$ and the subsequence of partial sums $s_{1}, s_{3}, s_{5}, \ldots$ separately - show that one of these subsequences is increasing, another is decreasing, and obtain a relationship between the subsequences.
Problem 7. A sequence $\left\{a_{n}\right\}$ is defined to be Cesaro summable with Cesaro sum L if the partial sums $\left\{s_{n}\right\}$ have the property that

$$
\lim _{n \rightarrow \infty} \frac{s_{1}+\ldots+s_{n}}{n}=L
$$

Show that if $\left\{a_{n}\right\}$ is summable with sum L, then $\left\{a_{n}\right\}$ is Cesaro summable with Cesaro sum L. Show that the converse does not hold: there exists a sequence which is Cesaro summable but not summable.
Problem 8. Suppose $\left\{a_{n}\right\}$ is summable but not absolutely summable. Define the sequences $\left\{a_{n}^{+}\right\}$and $\left\{a_{n}^{-}\right\}$by

$$
a_{n}^{ \pm}= \begin{cases}a_{n} & \text { if } \pm a_{n}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Show that neither $\left\{a_{n}^{+}\right\}$nor $\left\{a_{n}^{-}\right\}$are summable.

Problem 9 (Optional). Suppose $\left\{a_{n}\right\}$ is summable but not absolutely summable. Show that for any $L \in \mathbb{R}$, there is a rearrangement of $\left\{a_{n}\right\}$ whose sum converges to L. Hint: if $L>0$ then try to add terms of $\left\{a_{n}^{+}\right\}$until you are greater than L and then add terms of $\left\{a_{n}^{-}\right\}$until you are less than L. Try to convince yourself that this process makes sense and gives a sum that converges to L!

