1. Problem Set 6

Problem 1. Suppose

Show that

$$\lim_{x \to p} f(x) = L \quad and \quad \lim_{x \to p} g(x) = M.$$
$$\lim_{x \to p} f(x)g(x) = LM,$$

and
$$\lim_{x \to p} \frac{1}{g(x)} = \frac{1}{M}$$
 if $M \neq 0$.

Problem 2. Suppose

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \neq \mathbb{Q}. \end{cases}$$

Show that $\lim_{x \to a} f(x)$ does not exist, for any $a \in \mathbb{R}$.

Problem 3. Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$ and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L.$$

Show that $\lim_{x \to a} g(x) = L$.

Problem 4. In the spirit of the $\varepsilon - \delta$ definitions of $\lim_{x \to a} f(x) = L$, give definitions for $\lim_{x \to \infty} f(x) = L$, $\lim_{x \to a} f(x) = \infty$, and $\lim_{x \to a^+} f(x) = L$.

Problem 5. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous, and f(p) > 0. Use the epsilon-delta definition of continuity to show that there exists an open interval (a, b) containing p such that f(x) > 0 for all $x \in (a, b)$. (Optional: do the same thing but using the open sets definition of continuity. Which is easier?)

Problem 6. Show that if $y \ge 0$ then there exists a unique $x \ge 0$ such that $x^2 = y$. Use this to define the square root function, and show that the square root function is continuous at x for every x > 0.

Problem 7. A function $f : A \to \mathbb{R}$ is Lipschitz if there exists C > 0 such that for all $x, y \in A$

$$|f(x) - f(y)| \le C|x - y|.$$

Let A be open and suppose $f : A \to \mathbb{R}$ is Lipschitz. Show that f is continuous at all $x \in A$.