1. Problem Set 6

Problem 1. Suppose

$$
\lim _{x \rightarrow p} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow p} g(x)=M
$$

Show that

$$
\begin{aligned}
\lim _{x \rightarrow p} f(x) g(x) & =L M \\
\text { and } \quad \lim _{x \rightarrow p} \frac{1}{g(x)} & =\frac{1}{M} \quad \text { if } M \neq 0
\end{aligned}
$$

Problem 2. Suppose

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \neq \mathbb{Q} .\end{cases}
$$

Show that $\lim _{x \rightarrow a} f(x)$ does not exist, for any $a \in \mathbb{R}$.
Problem 3. Suppose $f(x) \leq g(x) \leq h(x)$ for all $x \in \mathbb{R}$ and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

Show that $\lim _{x \rightarrow a} g(x)=L$.
Problem 4. In the spirit of the $\varepsilon-\delta$ definitions of $\lim _{x \rightarrow a} f(x)=L$, give definitions for

$$
\lim _{x \rightarrow \infty} f(x)=L, \quad \lim _{x \rightarrow a} f(x)=\infty, \quad \text { and } \quad \lim _{x \rightarrow a^{+}} f(x)=L
$$

Problem 5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and $f(p)>0$. Use the epsilon-delta definition of continuity to show that there exists an open interval (a, b) containing p such that $f(x)>0$ for all $x \in(a, b)$. (Optional: do the same thing but using the open sets definition of continuity. Which is easier?)

Problem 6. Show that if $y \geq 0$ then there exists a unique $x \geq 0$ such that $x^{2}=y$. Use this to define the square root function, and show that the square root function is continuous at x for every $x>0$.

Problem 7. A function $f: A \rightarrow \mathbb{R}$ is Lipschitz if there exists $C>0$ such that for all $x, y \in A$

$$
|f(x)-f(y)| \leq C|x-y|
$$

Let A be open and suppose $f: A \rightarrow \mathbb{R}$ is Lipschitz. Show that f is continuous at all $x \in A$.

