1. Problem Set 7

Problem 1. Suppose f is differentiable on (a, b). Show that f is nondecreasing on (a, b) if and only if $f^{\prime}(x) \geq 0$ on (a, b).
Problem 2. Suppose $S: \mathbb{R} \rightarrow[-1,1]$ is a differentiable function such that $S^{\prime}(n \pi)=1$ whenever n is an even integer and $S^{\prime}(n \pi)=-1$ whenever n is an odd integer. (You should think of $S(x)=\sin (x)$, but strictly speaking we haven't defined $\sin \ldots$ or π.) Show that the function

$$
f(x)= \begin{cases}x^{2} S(1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is differentiable everywhere, but its derivative is not continuous at zero.
Problem 3. Suppose that f is continuous at a and $f^{\prime}(x)$ exists for all $x \neq a$. Suppose also that $\lim _{x \rightarrow a} f^{\prime}(x)$ exists. Show that $f^{\prime}(a)$ exists and

$$
f^{\prime}(a)=\lim _{x \rightarrow a} f^{\prime}(x)
$$

Convince yourself that this means that the only way the derivative can fail to be continuous at a is if $\lim _{x \rightarrow a} f^{\prime}(x)$ does not exist.
Problem 4. Suppose $f^{\prime}(x)=0$. Show that f has a local maximum at x if $f^{\prime \prime}(x)>0$, and f has a local minimum at x if $f^{\prime \prime}(x)<0$.
Problem 5. Suppose $f^{\prime}(x) \geq 4$ for all $x \in[0,1]$. Show that there is an interval of length $1 / 4$ on which $|f(x)|>1$.

Problem 6. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is one-to-one and continuous. Show that f is either increasing or decreasing on (a, b).
Problem 7. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is one-to-one and continuous. Show that f^{-1} is continuous.

Problem 8. Suppose f is continuous, differentiable, and one-to-one on (a, b). Show that f^{-1} is differentiable at all $x \in(a, b)$ such that $f^{\prime}\left(f^{-1}(x)\right) \neq 0$, and

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Hint: You must do more than naively use the chain rule: the chain rule only applies if you already know that f^{-1} is differentiable.

