1. Problem Set 7

Problem 1. Suppose f is differentiable on (a, b). Show that f is nondecreasing on (a, b) if and only if $f'(x) \ge 0$ on (a, b).

Problem 2. Suppose $S : \mathbb{R} \to [-1, 1]$ is a differentiable function such that $S'(n\pi) = 1$ whenever n is an even integer and $S'(n\pi) = -1$ whenever n is an odd integer. (You should think of $S(x) = \sin(x)$, but strictly speaking we haven't defined $\sin \ldots \ or \ \pi$.) Show that the function

$$f(x) = \begin{cases} x^2 S(1/x) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

is differentiable everywhere, but its derivative is not continuous at zero.

Problem 3. Suppose that f is continuous at a and f'(x) exists for all $x \neq a$. Suppose also that $\lim f'(x)$ exists. Show that f'(a) exists and

$$f'(a) = \lim_{x \to a} f'(x).$$

Convince yourself that this means that the only way the derivative can fail to be continuous at a is if $\lim_{x \to a} f'(x)$ does not exist.

Problem 4. Suppose f'(x) = 0. Show that f has a local maximum at x if f''(x) > 0, and f has a local minimum at x if f''(x) < 0.

Problem 5. Suppose $f'(x) \ge 4$ for all $x \in [0, 1]$. Show that there is an interval of length 1/4 on which |f(x)| > 1.

Problem 6. Suppose $f : (a, b) \to \mathbb{R}$ is one-to-one and continuous. Show that f is either increasing or decreasing on (a, b).

Problem 7. Suppose $f : (a,b) \to \mathbb{R}$ is one-to-one and continuous. Show that f^{-1} is continuous.

Problem 8. Suppose f is continuous, differentiable, and one-to-one on (a, b). Show that f^{-1} is differentiable at all $x \in (a, b)$ such that $f'(f^{-1}(x)) \neq 0$, and

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Hint: You must do more than naively use the chain rule: the chain rule only applies if you already know that f^{-1} is differentiable.