1. Problem Set 8

Problem 1. Suppose $a<b<c$. Show that f is integrable on $[a, c]$ if and only if it is integrable on $[a, b]$ and $[b, c]$, and that

$$
\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x
$$

Problem 2. Suppose f and g are integrable on $[a, b]$. Show that $f+g$ is integrable on [a,b] and

$$
\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Problem 3. Suppose g is integrable on $[a, b]$. Show that for any $\varepsilon>0$ there are continuous functions f and h on $[a, b]$ such that $f \leq g \leq h$ on $[a, b]$ and

$$
\int_{a}^{b} h(x) d x-\int_{a}^{b} f(x) d x \leq \varepsilon
$$

Problem 4. Suppose that f and g are differentiable on $[a, b]$ and f^{\prime} and g^{\prime} are continuous there. Show that

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{x=a} ^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

Problem 5. Suppose that f and g^{\prime} are continuous. Show that

$$
\int_{g(a)}^{g(b)} f(u) d u=\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x .
$$

Problem 6. For $x>0$ define

$$
\log (x)=\int_{1}^{x} \frac{1}{t} d t
$$

Show that $\log (a b)=\log (a)+\log (b)$.

