Problem 1. Suppose f is integrable on [a, b]. Show that |f| is integrable and

$$\left| \int_{a}^{b} f(t) dt \right| \leq \int_{a}^{b} |f(t)| dt.$$

Problem 2. Suppose f, g are continuous on [a, b]. Show that

$$\left(\int_{a}^{b} f(t)g(t)dt\right)^{2} \leq \left(\int_{a}^{b} f^{2}(t)dt\right)\left(\int_{a}^{b} g^{2}(t)dt\right)$$

(Hint: if the left side is not zero, set $F = f/\sqrt{\int_a^b f^2(t)dt}$, define G similarly, and consider the quantity $(F - G)^2$).

Problem 3. Suppose f is integrable on [a, b] and

$$F(x) = \int_{a}^{x} f(t)dt.$$

Show that F is continuous at all $x \in (a, b)$.

Problem 4. Suppose f is continuous on [0, 1]. Show that

$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n} = \int_{0}^{1} f(x) dx.$$

Problem 5. Suppose $\{a_n\}$ is a nondecreasing sequence which is bounded above. Show that $\{a_n\}$ converges.

Definition 1. Suppose $\{a_n\}$ is a bounded sequence. Define new sequences

$$u_n = \sup\{a_m | m > n\} \quad and \quad l_n = \inf\{a_m | m > n\}$$

We say that

$$\limsup a_n = p \ if \ \lim_{n \to \infty} u_n = p$$

and

$$\liminf a_n = p \ if \ \lim_{n \to \infty} l_n = p.$$

Problem 6. Suppose $\{a_n\}$ is a bounded sequence. Show that $\limsup a_n$ and $\liminf a_n$ always exist.

Problem 7. Suppose $\{a_n\}$ is a bounded sequence, and $\limsup a_n = \liminf a_n = p$. Show that $\{a_n\}$ converges to p.

Problem 8. Suppose $A \subset \mathbb{R}$. Show that $p \in \overline{A}$ if and only if there exists a sequence $\{a_n\}$ such that each $a_n \in A$, and $\{a_n\}$ converges to p.