1. Problem Set 9

Problem 1. Suppose f is integrable on $[a, b]$. Show that $|f|$ is integrable and

$$
\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

Problem 2. Suppose f, g are continuous on $[a, b]$. Show that

$$
\left(\int_{a}^{b} f(t) g(t) d t\right)^{2} \leq\left(\int_{a}^{b} f^{2}(t) d t\right)\left(\int_{a}^{b} g^{2}(t) d t\right)
$$

(Hint: if the left side is not zero, set $F=f / \sqrt{\int_{a}^{b} f^{2}(t) d t}$, define G similarly, and consider the quantity $\left.(F-G)^{2}\right)$.

Problem 3. Suppose f is integrable on $[a, b]$ and

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Show that F is continuous at all $x \in(a, b)$.
Problem 4. Suppose f is continuous on $[0,1]$. Show that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n}=\int_{0}^{1} f(x) d x
$$

Problem 5. Suppose $\left\{a_{n}\right\}$ is a nondecreasing sequence which is bounded above. Show that $\left\{a_{n}\right\}$ converges.
Definition 1. Suppose $\left\{a_{n}\right\}$ is a bounded sequence. Define new sequences

$$
u_{n}=\sup \left\{a_{m} \mid m>n\right\} \quad \text { and } \quad l_{n}=\inf \left\{a_{m} \mid m>n\right\}
$$

We say that

$$
\lim \sup a_{n}=p \text { if } \lim _{n \rightarrow \infty} u_{n}=p
$$

and

$$
\liminf a_{n}=p \text { if } \lim _{n \rightarrow \infty} l_{n}=p
$$

Problem 6. Suppose $\left\{a_{n}\right\}$ is a bounded sequence. Show that $\limsup a_{n}$ and $\lim \inf a_{n}$ always exist.

Problem 7. Suppose $\left\{a_{n}\right\}$ is a bounded sequence, and $\limsup a_{n}=\lim \inf a_{n}=p$. Show that $\left\{a_{n}\right\}$ converges to p.
Problem 8. Suppose $A \subset \mathbb{R}$. Show that $p \in \bar{A}$ if and only if there exists a sequence $\left\{a_{n}\right\}$ such that each $a_{n} \in A$, and $\left\{a_{n}\right\}$ converges to p.

