## 1. Sequences and Subsequences

Definition 1.1. A sequence is a function $a: N \rightarrow \mathbb{R}$ from the natural numbers to the real numbers.

By setting $a_{n}=a(n)$, we think of a sequence $a$ as a list $a_{1}, a_{2}, a_{3} \ldots$ of real numbers. We use the notation $\left\{a_{n}\right\}_{n=1}^{\infty}$ for such a sequence, or if there is no possibility of confusion, we sometimes abbreviate this and write simply $\left\{a_{n}\right\}$. More generally, we also use the term sequence to refer to a function defined on $\left\{n \in N \mid n \geq n_{0}\right\}$ for any fixed $n_{0} \in \mathbb{N}$. We denote this by writing $\left\{a_{n}\right\}_{n=n_{0}}^{\infty}$ for such a sequence.

Definition 1.2. We say that a sequence $\left\{a_{n}\right\}$ converges to a point $p \in \mathbb{R}$ if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that for all $n>N$, we have $\left|a_{n}-p\right|<\varepsilon$.

If $\left\{a_{n}\right\}$ converges to $p$, we write this as:

$$
\lim _{n \rightarrow \infty} a_{n}=p
$$

and call $p$ the limit of $\left\{a_{n}\right\}$. If $\left\{a_{n}\right\}$ does not converge to any point $p$, we call it divergent.
Theorem 1.1. Suppose that

$$
\lim _{n \rightarrow \infty} a_{n}=p \quad \text { and } \quad \lim _{n \rightarrow \infty} a_{n}=p^{\prime}
$$

Then $p=p^{\prime}$. In other words, limits of sequences are unique.
Definition 1.3. Let $\left(a_{n}\right)$ be a sequence. A subsequence of $\left\{a_{n}\right\}$ is a sequence $b$ defined by the composition $b=a \circ \eta: \mathbb{N} \rightarrow \mathbb{R}$, where $\eta: \mathbb{N} \rightarrow \mathbb{N}$ is an increasing function.

Remark: By increasing, we mean that $\eta$ has the property that if $n<m$, then $\eta(n)<$ $\eta(m)$. An increasing function on the natural numbers has the property that $\eta(k) \geq k$.

Note that $\eta$ itself defines a sequence $n_{k}=\eta(k)$, so we usually write $b_{k}=a_{n_{k}}$.
Exercise 1.2. Construct a divergent sequence with a subsequence which converges.
Theorem 1.3. If $\left\{a_{n}\right\}$ converges to $p$, then so do its subsequences.
Sometimes divergent sequences have points that behave like limits, but are not necessarily unique:

Definition 1.4. A point $p \in \mathbb{R}$ is an accumulation point of $\left\{a_{n}\right\}$ if for all $\varepsilon>0$ and $M \in \mathbb{N}$, there exists $n>M$ such that $\left|a_{n}-p\right|<\varepsilon$.
Remark: Equivalently, we could say that $p \in \mathbb{R}$ is an accumulation point of $\left\{a_{n}\right\}$ if for all $\varepsilon>0$, there exist infinitely many $n$ such that $\left|a_{n}-p\right|<\varepsilon$.

Exercise 1.4. Construct a sequence with two distinct accumulation points. Construct a sequence with infinitely many accumulation points. Construct a sequence with no accumulation points.

Proposition 1.5. Let $\left\{a_{n}\right\}$ be a sequence and suppose that there exists a subsequence $\left(b_{k}=a_{n_{k}}\right)$ that converges to $p$. Then $p$ is an accumulation point of $\left(a_{n}\right)$.

Theorem 1.6. $A$ point $p$ is an accumulation point of $\left\{a_{n}\right\}$ if and only if there exists $a$ subsequence $b_{k}$ converging to $p$.

Corollary 1.7. Suppose that $\lim _{n \rightarrow \infty} a_{n}=p$. Then $p$ is the only accumulation point of the sequence $\left\{a_{n}\right\}$.

Definition 1.5. A sequence $\left\{a_{n}\right\}$ is bounded if the set of all $a_{n}$ is bounded. Similar definitions apply for bounded above and bounded below.

Theorem 1.8. Suppose $\left\{a_{n}\right\}$ converges. Then $\left\{a_{n}\right\}$ is bounded.
Proposition 1.9 (Monotone Convergence Theorem*). Suppose $\left\{a_{n}\right\}$ is nondecreasing (meaning that $a_{n} \leq a_{n+1}$ for each $n$ ) and bounded above. Then $\left\{a_{n}\right\}$ converges.

Theorem 1.10 (Bolzano-Weierstrass*). Every bounded sequence has a convergent subsequence.

Theorem 1.11. Suppose $\left\{a_{n}\right\}$ converges to $L$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Then $\left\{f\left(a_{n}\right)\right\}$ converges to $f(L)$.

## 2. Cauchy Sequences

Definition 2.1. A sequence $\left\{a_{n}\right\}$ is Cauchy if for all $\varepsilon>0$ there exists $N$ such that for all $n, m>N$,

$$
\left|a_{n}-a_{m}\right|<\varepsilon .
$$

Proposition 2.1. If $\left\{a_{n}\right\}$ converges then it is Cauchy.
Lemma 2.2. Suppose $\left\{a_{n}\right\}$ is Cauchy and a subsequence of $\left\{a_{n}\right\}$ converges to $p$. Then $\left\{a_{n}\right\}$ converges to $p$.

Lemma 2.3. If $\left\{a_{n}\right\}$ is Cauchy then $\left\{a_{n}\right\}$ is bounded.
Theorem 2.4 $\left(^{*}\right.$ ). A sequence $\left\{a_{n}\right\}$ is Cauchy if and only if it converges.

## 3. Series

Definition 3.1. Consider a sequence $\left\{a_{n}\right\}$. We define the $n^{t h}$ partial sum of $\left\{a_{n}\right\}$ by

$$
s_{n}=a_{1}+\ldots+a_{n} .
$$

We say that $\left\{a_{n}\right\}$ is summable (or $\sum_{n=1}^{\infty} a_{n}$ converges) if $\left\{s_{n}\right\}$ converges, and then we define

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n} .
$$

Exercise 3.1. Prove that if $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are summable then so is $\left\{a_{n}+b_{n}\right\}$, and

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n} .
$$

Theorem 3.2 (Vanishing Criterion). If $\left\{a_{n}\right\}$ is summable then $\lim _{n \rightarrow \infty} a_{n}=0$. Note that the converse is false!
Proposition 3.3 (Boundedness Criterion). Suppose $\left\{a_{n}\right\}$ is nonnegative and the sequence of its partial sums $\left\{s_{n}\right\}$ is bounded. Then $\left\{a_{n}\right\}$ is summable.

Theorem 3.4 (Comparison Test). Suppose $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, and $\left\{b_{n}\right\}$ is summable. Then $\left\{a_{n}\right\}$ is summable.
Lemma 3.5. The geometric series $\sum_{n=1}^{\infty} r^{n}$ converges if $0 \leq r<1$ and diverges if $r \geq 1$.
Theorem 3.6 (Ratio Test*). Suppose $0 \leq a_{n}$ for all $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=r$. Then $\left\{a_{n}\right\}$ is summable if $r<1$ and not summable if $r>1$. If $r=1$ then $\left\{a_{n}\right\}$ may or may not be summable.
Theorem 3.7 (Integral Test). Suppose $f$ is positive, continuous, and nonincreasing, and $a_{n}=f(n)$. Then $\left\{a_{n}\right\}$ is summable if and only if

$$
\lim _{x \rightarrow \infty} \int_{1}^{x} f(t) d t
$$

exists.
Definition 3.2. We say that $\left\{a_{n}\right\}$ is absolutely summable, or $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, if $\left\{\left|a_{n}\right|\right\}$ is summable.
Theorem 3.8. Suppose $\sum_{n=1}^{\infty} a_{n}$ converges absolutely. Then $\sum_{n=1}^{\infty} a_{n}$ converges.
Remark: The alternating harmonic series $1-1 / 2+1 / 3-1 / 4+\ldots$ is converges but not absolutely. However, it is possible to show that such a series can be rearranged to converge to any number you want - which is terribly depraved behavior. Absolutely convergent series are too good for these problems.
Theorem 3.9. Suppose $\left\{a_{n}\right\}$ is absolutely summable, and $\left\{b_{n}\right\}$ is a rearrangement of $\left\{a_{n}\right\}$ (i.e. $b_{n}=a_{f(n)}$ for some bijective function $f: \mathbb{N} \rightarrow \mathbb{N}$.) Then $\left\{b_{n}\right\}$ converges absolutely, and

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} b_{n}
$$

## 4. Taylor Series

Theorem 4.1. Suppose $f$ is differentiable $n+1$ times, and $f^{(n+1)}$ is continuous. Then for any $a \in \mathbb{R}$,

$$
f(x)=\sum_{k=1}^{n} f^{(k)}(a) \frac{(x-a)^{k}}{k!}+R_{n, a}
$$

where

$$
R_{n, a}=\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t
$$

Theorem 4.2. The expression

$$
R_{n, a}(x)=\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) d t
$$

has the properties that

- $R_{n, a}(x)=\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}(x-a) \quad$ for some $t \in(a, x)$
- $R_{n, a}(x)=\frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1} \quad$ for some $t \in(a, x)$.

Remark: For many well behaved functions like $e^{x}, \sin (x)$, etc. it is easy to show that $\lim _{n \rightarrow \infty} R_{n, a}(x)=0$ for any $x$. This gives us the classic Taylor series

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
\end{aligned}
$$

For other functions it is possible to obtain series expressions for limited values of $x$. For example, for $|x|<1$, the following series expressions hold:

$$
\begin{aligned}
\arctan x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \\
\log (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \\
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+x^{4}+\ldots
\end{aligned}
$$

Note that the last one we already knew: it's the sum of a geometric series!

## 5. Sequences of Functions

Definition 5.1. Suppose $f_{n}, f: A \rightarrow \mathbb{R}$. We say that $f_{n}$ converge to $f$ pointwise on $A$ if

$$
\lim _{n \rightarrow \infty} f_{n}(x)=f(x)
$$

for each $x \in A$.

Definition 5.2. Suppose $f_{n}, f: A \rightarrow \mathbb{R}$. We say that $f_{n}$ converge to $f$ uniformly on $A$ if for every $\varepsilon>0$ there exists $N$ such that for all $n>N$ and $x \in A$,

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

Exercise 5.1. Give an example of a sequence of functions that converges pointwise on [ $a, b]$ but not uniformly.

Theorem 5.2 (*). Suppose $f_{n}: A \rightarrow \mathbb{R}$ are continuous and $f_{n} \rightarrow f$ uniformly on $A$. Then $f$ is continuous on $A$.

Theorem 5.3. Suppose $f_{n}, f:[a, b] \rightarrow \mathbb{R}$ are integrable and $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

Theorem 5.4. Suppose $f_{n}, f:(a, b) \rightarrow \mathbb{R}, f_{n} \rightarrow f$ pointwise, and each $f_{n}$ is differentiable, and $f_{n}^{\prime} \rightarrow f$ uniformly on $(a, b)$. Then $f$ is differentiable on $[a, b]$, and

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

for all $x \in(a, b)$.

