
1. Sequences and Subsequences

Definition 1.1. A sequence is a function a : N → R from the natural numbers to the real
numbers.

By setting an = a(n), we think of a sequence a as a list a1, a2, a3 . . . of real numbers. We
use the notation {an}∞n=1 for such a sequence, or if there is no possibility of confusion, we
sometimes abbreviate this and write simply {an}. More generally, we also use the term
sequence to refer to a function defined on {n ∈ N |n ≥ n0} for any fixed n0 ∈ N. We
denote this by writing {an}∞n=n0

for such a sequence.

Definition 1.2. We say that a sequence {an} converges to a point p ∈ R if for every
ε > 0 there exists N ∈ N such that for all n > N , we have |an − p| < ε.

If {an} converges to p, we write this as:

lim
n→∞

an = p,

and call p the limit of {an}. If {an} does not converge to any point p, we call it divergent.

Theorem 1.1. Suppose that

lim
n→∞

an = p and lim
n→∞

an = p′.

Then p = p′. In other words, limits of sequences are unique.

Definition 1.3. Let (an) be a sequence. A subsequence of {an} is a sequence b defined by
the composition b = a ◦ η : N→ R, where η : N→ N is an increasing function.

Remark: By increasing, we mean that η has the property that if n < m, then η(n) <
η(m). An increasing function on the natural numbers has the property that η(k) ≥ k.

Note that η itself defines a sequence nk = η(k), so we usually write bk = ank
.

Exercise 1.2. Construct a divergent sequence with a subsequence which converges.

Theorem 1.3. If {an} converges to p, then so do its subsequences.

Sometimes divergent sequences have points that behave like limits, but are not neces-
sarily unique:

Definition 1.4. A point p ∈ R is an accumulation point of {an} if for all ε > 0 and
M ∈ N, there exists n > M such that |an − p| < ε.

Remark: Equivalently, we could say that p ∈ R is an accumulation point of {an} if for
all ε > 0, there exist infinitely many n such that |an − p| < ε.

Exercise 1.4. Construct a sequence with two distinct accumulation points. Construct a
sequence with infinitely many accumulation points. Construct a sequence with no accumu-
lation points.

Proposition 1.5. Let {an} be a sequence and suppose that there exists a subsequence
(bk = ank

) that converges to p. Then p is an accumulation point of (an).
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Theorem 1.6. A point p is an accumulation point of {an} if and only if there exists a
subsequence bk converging to p.

Corollary 1.7. Suppose that limn→∞ an = p. Then p is the only accumulation point of
the sequence {an}.

Definition 1.5. A sequence {an} is bounded if the set of all an is bounded. Similar
definitions apply for bounded above and bounded below.

Theorem 1.8. Suppose {an} converges. Then {an} is bounded.

Proposition 1.9 (Monotone Convergence Theorem*). Suppose {an} is nondecreasing
(meaning that an ≤ an+1 for each n) and bounded above. Then {an} converges.

Theorem 1.10 (Bolzano-Weierstrass*). Every bounded sequence has a convergent subse-
quence.

Theorem 1.11. Suppose {an} converges to L and f : R→ R is continuous. Then {f(an)}
converges to f(L).

2. Cauchy Sequences

Definition 2.1. A sequence {an} is Cauchy if for all ε > 0 there exists N such that for
all n,m > N ,

|an − am| < ε.

Proposition 2.1. If {an} converges then it is Cauchy.

Lemma 2.2. Suppose {an} is Cauchy and a subsequence of {an} converges to p. Then
{an} converges to p.

Lemma 2.3. If {an} is Cauchy then {an} is bounded.

Theorem 2.4 (*). A sequence {an} is Cauchy if and only if it converges.

3. Series

Definition 3.1. Consider a sequence {an}. We define the nth partial sum of {an} by

sn = a1 + . . .+ an.

We say that {an} is summable (or
∞∑
n=1

an converges) if {sn} converges, and then we define

∞∑
n=1

an = lim
n→∞

sn.

Exercise 3.1. Prove that if {an} and {bn} are summable then so is {an + bn}, and
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn.
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Theorem 3.2 (Vanishing Criterion). If {an} is summable then lim
n→∞

an = 0. Note that

the converse is false!

Proposition 3.3 (Boundedness Criterion). Suppose {an} is nonnegative and the sequence
of its partial sums {sn} is bounded. Then {an} is summable.

Theorem 3.4 (Comparison Test). Suppose 0 ≤ an ≤ bn for all n ∈ N, and {bn} is
summable. Then {an} is summable.

Lemma 3.5. The geometric series
∞∑
n=1

rn converges if 0 ≤ r < 1 and diverges if r ≥ 1.

Theorem 3.6 (Ratio Test*). Suppose 0 ≤ an for all n ∈ N, and lim
n→∞

an+1

an
= r. Then

{an} is summable if r < 1 and not summable if r > 1. If r = 1 then {an} may or may
not be summable.

Theorem 3.7 (Integral Test). Suppose f is positive, continuous, and nonincreasing, and
an = f(n). Then {an} is summable if and only if

lim
x→∞

∫ x

1

f(t)dt

exists.

Definition 3.2. We say that {an} is absolutely summable, or
∞∑
n=1

an converges absolutely,

if {|an|} is summable.

Theorem 3.8. Suppose
∞∑
n=1

an converges absolutely. Then
∞∑
n=1

an converges.

Remark: The alternating harmonic series 1 − 1/2 + 1/3 − 1/4 + . . . is converges but
not absolutely. However, it is possible to show that such a series can be rearranged to
converge to any number you want – which is terribly depraved behavior. Absolutely
convergent series are too good for these problems.

Theorem 3.9. Suppose {an} is absolutely summable, and {bn} is a rearrangement of {an}
(i.e. bn = af(n) for some bijective function f : N → N.) Then {bn} converges absolutely,
and

∞∑
n=1

an =
∞∑
n=1

bn.

4. Taylor Series

Theorem 4.1. Suppose f is differentiable n + 1 times, and f (n+1) is continuous. Then
for any a ∈ R,

f(x) =
n∑

k=1

f (k)(a)
(x− a)k

k!
+Rn,a
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where

Rn,a =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt.

Theorem 4.2. The expression

Rn,a(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt

has the properties that

• Rn,a(x) =
f (n+1)(t)

n!
(x− t)n(x− a) for some t ∈ (a, x)

• Rn,a(x) =
f (n+1)(t)

(n+ 1)!
(x− a)n+1 for some t ∈ (a, x).

Remark: For many well behaved functions like ex, sin(x), etc. it is easy to show that
lim
n→∞

Rn,a(x) = 0 for any x. This gives us the classic Taylor series

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ . . .

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+ . . .

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

For other functions it is possible to obtain series expressions for limited values of x. For
example, for |x| < 1, the following series expressions hold:

arctanx = x− x3

3
+
x5

5
− x7

7
+ . . .

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . .

1

1− x
= 1 + x+ x2 + x3 + x4 + . . .

Note that the last one we already knew: it’s the sum of a geometric series!

5. Sequences of Functions

Definition 5.1. Suppose fn, f : A→ R. We say that fn converge to f pointwise on A if

lim
n→∞

fn(x) = f(x)

for each x ∈ A.
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Definition 5.2. Suppose fn, f : A→ R. We say that fn converge to f uniformly on A if
for every ε > 0 there exists N such that for all n > N and x ∈ A,

|fn(x)− f(x)| < ε.

Exercise 5.1. Give an example of a sequence of functions that converges pointwise on
[a, b] but not uniformly.

Theorem 5.2 (*). Suppose fn : A → R are continuous and fn → f uniformly on A.
Then f is continuous on A.

Theorem 5.3. Suppose fn, f : [a, b] → R are integrable and fn → f uniformly on [a, b].
Then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

Theorem 5.4. Suppose fn, f : (a, b)→ R, fn → f pointwise, and each fn is differentiable,
and f ′

n → f uniformly on (a, b). Then f is differentiable on [a, b], and

f ′(x) = lim
n→∞

f ′
n(x)

for all x ∈ (a, b).


