1. THE MEAN VALUE THEOREM

Exercise 1.1. Prove Rolle's Theorem: If f is continuous at all $x \in [a, b]$, and f is differentiable at all $x \in (a, b)$, and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Exercise 1.2. Prove the Mean Value Theorem: If f is continuous at all $x \in [a, b]$ and differentiable at all $x \in (a, b)$, then there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Exercise 1.3. Prove that f'(x) = 0 for all $x \in (a, b)$ if and only if f is constant on (a, b).

Exercise 1.4. Prove the Cauchy Mean Value Theorem: if f and g are continuous at all $x \in [a, b]$, and differentiable at all $x \in (a, b)$, then there exists $c \in (a, b)$ such that

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

Exercise 1.5. Prove (the following version of) L'Hôpital's Rule: if f and g are differentiable at a, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, and $\lim_{x \to a} f'(x)/g'(x)$ exists, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$