1. The Mean Value Theorem

Exercise 1.1. Prove Rolle's Theorem: If f is continuous at all $x \in[a, b]$, and f is differentiable at all $x \in(a, b)$, and $f(a)=f(b)$, then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Exercise 1.2. Prove the Mean Value Theorem: If f is continuous at all $x \in[a, b]$ and differentiable at all $x \in(a, b)$, then there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Exercise 1.3. Prove that $f^{\prime}(x)=0$ for all $x \in(a, b)$ if and only if f is constant on (a, b).
Exercise 1.4. Prove the Cauchy Mean Value Theorem: if f and g are continuous at all $x \in[a, b]$, and differentiable at all $x \in(a, b)$, then there exists $c \in(a, b)$ such that

$$
g^{\prime}(c)(f(b)-f(a))=f^{\prime}(c)(g(b)-g(a))
$$

Exercise 1.5. Prove (the following version of) L'Hôpital's Rule: if f and g are differentiable at $a, \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$, and $\lim _{x \rightarrow a} f^{\prime}(x) / g^{\prime}(x)$ exists, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

