1. Worksheet Aug 30

Exercise 1.1. State what it means for p not to be a limit point of a set A.

Definition 1.1. Let (a, b) be an open interval. We define the exterior of (a, b) to be the set $C \setminus [a, b]$.

Exercise 1.2. Show that no element of the exterior of (a, b) is a limit point of (a, b), and vice versa.

Exercise 1.3. If two open intervals have a point x in common, their intersection is an open interval containing x.

Exercise 1.4. Let $A, B \subset C$. If p is a limit point of $A \cup B$, then p is a limit point of A or B.

Exercise 1.5. Let A_1, \ldots, A_n be n subsets of C. Then p is a limit point of $A_1 \cup \cdots \cup A_n$ if and only if p is a limit point of at least one of the sets A_k .

Exercise 1.6. If p and q are distinct points of C, then there exist disjoint open intervals I_1 and I_2 containing p and q, respectively.

Exercise 1.7. A subset of C consisting of one point has no limit points.

Exercise 1.8. A finite subset $A \subset C$ has no limit points.