1. Worksheet Oct 2

Recall that there is an injective map $I:\mathbb{Q}\to\mathbb{R}$ which respects the ordered field structures:

$$I(a) + I(b) = I(a + b)$$

$$I(a) \cdot I(b) = I(ab)$$

$$a < b \iff I(a) < I(b)$$

We identify \mathbb{Q} and its subsets with their image under this map. Last class we proved the proposition

Proposition 1.1. $\mathbb{Z} \subset \mathbb{R}$ is not bounded.

Exercise 1.2. *Prove that* $\mathbb{Z} \subset \mathbb{R}$ *is closed.*

Exercise 1.3. Suppose that $x, y \in \mathbb{R}$ and y - x > 1. Show that there exists $n \in \mathbb{Z}$ such that x < n < y.

Definition 1.1. We say that $X \subset \mathbb{R}$ is dense in \mathbb{R} if every open interval $(a, b) \subset \mathbb{R}$ contains an element of X.

Exercise 1.4. Show that \mathbb{Q} is dense in \mathbb{R} .

Exercise 1.5. Show that $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} . (You can use the fact that $\sqrt{2}$ is irrational, without proof.)