1. Worksheet Sep 20

Definition 1.1. Let $X \subseteq C$, and suppose $\mathcal{O} = \{U_{\lambda}\}$ is a collection of subsets of C. We say \mathcal{O} is an open cover of \mathbb{R} if i) all the U_{λ} are open and ii)

$$X \subset \bigcup_{\lambda} U_{\lambda}.$$

Definition 1.2. Let X be a subset of C. X is compact if for every open cover \mathcal{O} of X, there exists a finite subset $\mathcal{O}' \subset \mathcal{O}$ that is also an open cover.

Exercise 1.1. If X is compact and $A \subset X$, does it follow that A is compact?

Exercise 1.2. Are unions of finitely many compact sets compact? What about unions of arbitrarily many compact sets? Justify your answers.

Exercise 1.3. Are intersections of finitely many compact sets compact? What about intersections of arbitrarily many compact sets? Justify your answers.

Recall that last time we proved the following lemma:

Lemma 1.4. Let $p \in C$ and consider the collection:

$$\mathcal{O} = \{ \text{ext} (a, b) \mid p \in (a, b) \}.$$

Then \mathcal{O} covers $\mathcal{C} \setminus \{p\}$ but no finite subcollection of \mathcal{O} covers $\mathcal{C} \setminus \{p\}$.

Exercise 1.5. Use the lemma to prove that if X is compact then it is closed.

Exercise 1.6. Prove that the closed interval [a, b] is compact.