1. Worksheet Sep 8

Definition 1.1. Suppose $X \subseteq C$. We say X is disconnected if there exist open sets $A, B \subset C$ such that

$$\begin{array}{rcl} X & \subseteq & A \cup B \\ A \cap B & = & \varnothing \\ A \cap X, B \cap X & \neq & \varnothing. \end{array}$$

We say X is connected if it is not disconnected.

Exercise 1.1. Suppose $x, y \in C$, and x < y. Show that there exists a $z \in C$ such that x < z < y.

Exercise 1.2. Let (a, b) be a nonempty open interval. Convince yourself that (a, b) is infinite.

Exercise 1.3. Suppose $x \in C$. Show that x is a limit point of C.

Exercise 1.4. Let [a, b] be a nonempty closed interval. Show that [a, b] is connected.

Proof. We begin by showing that $(-\infty, b]$ is connected. Suppose $(-\infty, b]$ is disconnected. Then there exist open sets A and B disconnect $(-\infty, b]$. Without loss of generality $b \in B$. Define $A' = A \cap (-\infty, b)$ and $B' = B \cup (b, \infty)$. By theorems 3.7 and 3.10, A' and B' are open. One can check that

$$A' \cap B' = A \cap B = \emptyset$$

and $A, B \neq \emptyset$. Moreover

 $A \cup B = \mathcal{C}$

so these sets disconnect the continuum, which contradicts the connectedness axiom. Therefore $(-\infty, b]$ is connected.

Now suppose [a, b] is disconnected. Then there exist open sets U and V which disconnect [a, b]. Without loss of generality, $a \in U$. Then let $U' = U \cup (-\infty, a)$ and $V' = V \cap (a, \infty)$. As above, one can check that U', V' are open, $U' \cap V' = \emptyset$, and $U' \cap (-\infty, b], V' \cap (-\infty b] \neq \emptyset$. Moreover $(-\infty, b] \subseteq U' \cup V'$, so U' and V' disconnect $(-\infty, b]$. But this contradicts the first part of the proof, and hence [a, b] is connected.

Exercise 1.5. Let (a, b) be a nonempty open interval. Show that (a, b) is connected.