Math 633 Midterm

Answers
(1) Show that there exists $C>0$ such that

$$
|u(0)| \leq C\|u\|_{W^{1,1}(\mathbb{R})}
$$

for any $u \in C^{1}(\mathbb{R}) \cap W^{1,1}(\mathbb{R})$. Explain how this inequality can be used to extend the operator $T: u \mapsto u(0)$ to a bounded linear operator $T: W^{1,1}(\mathbb{R}) \rightarrow$ \mathbb{R} with the bound

$$
|T(u)| \leq C\|u\|_{W^{1,1}(\mathbb{R})} .
$$

Proof: Let $u \in C^{1}(\mathbb{R}) \cap W^{1,1}(\mathbb{R})$. Then the fundamental theorem of calculus implies that

$$
u(0)=\int_{-\infty}^{0} u^{\prime}(x) d x
$$

since $u \rightarrow 0$ as $x \rightarrow \infty$. Taking absolute values and applying basic inequalities, we get that

$$
\begin{equation*}
|u(0)| \leq \int_{-\infty}^{\infty}\left|u^{\prime}(x)\right| d x \leq\|u\|_{W^{1,1}(\mathbb{R})} \tag{1}
\end{equation*}
$$

Now if $v \in W^{1,1}(\mathbb{R})$, then there exists a sequence $\left\{v_{k}\right\} \subset C^{1}(\mathbb{R}) \cap W^{1,1}(\mathbb{R})$ such that $\left\|v_{k}-v\right\|_{W^{1,1}(\mathbb{R})} \rightarrow 0$. Then the sequence $\left\{v_{k}\right\}$ is Cauchy in $W^{1,1}(\mathbb{R})$, and so the inequality (1) implies that the sequence $v_{k}(0)$ is Cauchy in \mathbb{R}. We can define

$$
T v=\lim _{k \rightarrow \infty} v_{k}(0) .
$$

This is well defined, since if w_{k} is another sequence in $C^{1}(\mathbb{R}) \cap W^{1,1}(\mathbb{R})$ which converges to v, then (1) implies that

$$
\left|v_{k}(0)-w_{k}(0)\right| \leq\left\|v_{k}-w_{k}\right\|_{W^{1,1}(\mathbb{R})}
$$

and so as k goes to infinity, $\left|v_{k}(0)-w_{k}(0)\right| \rightarrow 0$.
Moreover for any $\varepsilon>0$, there exists k such that

$$
|T v| \leq\left|v_{k}(0)\right|+\varepsilon \leq\left\|v_{k}\right\|_{W^{1,1}(\mathbb{R})}+\varepsilon \leq\|v\|_{W^{1,1}(\mathbb{R})}+2 \varepsilon
$$

and so

$$
|T v| \leq\|v\|_{W^{1,1}(\mathbb{R})}
$$

as required.
(2) Suppose $u \in W^{k, p}\left(\mathbb{R}^{n}\right)$ and $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Let $|\alpha| \leq k$. Show that

$$
D^{\alpha}(\eta * u)=\eta * D^{\alpha} u
$$

where D^{α} here indicates the weak derivative.
Proof: Let u, η, and α be as specified. Since $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, we know that $\eta * u$ is smooth, and thus $D^{\alpha}(\eta * u)$ is a classical derivative. Now we have

$$
\begin{aligned}
D^{\alpha}(\eta * u)(x) & =D^{\alpha} \int_{\mathbb{R}^{n}} \eta(x-y) u(y) d y \\
& =\int_{\mathbb{R}^{n}} D_{x}^{\alpha} \eta(x-y) u(y) d y
\end{aligned}
$$

with the switching of limits justified since $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
D^{\alpha}(\eta * u)(x)=(-1)^{|\alpha|} \int_{\mathbb{R}^{n}} D_{y}^{\alpha} \eta(x-y) u(y) d y
$$

and now it follows from the definition of the weak derivative that

$$
\begin{aligned}
D^{\alpha}(\eta * u)(x) & =\int_{\mathbb{R}^{n}} \eta(x-y) D_{y}^{\alpha} u(y) d y \\
& =\eta * D^{\alpha} u(x)
\end{aligned}
$$

(3) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with smooth boundary. Consider the boundary value problem

$$
\begin{aligned}
-\Delta u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

(a) State what it means for $u \in H_{0}^{1}(\Omega)$ to be a weak solution of the boundary value problem.
(b) Suppose $f \in L^{\frac{2 n}{n+2}}(\Omega)$, then show there exists a weak solution $u \in H_{0}^{1}(\Omega)$ to the boundary value problem above.

Answer: $u \in H_{0}^{1}(\Omega)$ is a weak solution to the boundary value problem if

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x
$$

for every $v \in H_{0}^{1}(\Omega)$ (or every $v \in C_{c}^{\infty}(\Omega)$: there are other equivalent statements). As noted during the exam, the rest of this question requires $n \geq 3$.

Suppose $f \in L^{\frac{2 n}{n+2}}(\Omega)$. Then for $v \in H_{0}^{1}(\Omega)$, Hölder's inequality gives us

$$
\begin{aligned}
\left|\int_{\Omega} f v d x\right| & \leq \int_{\Omega}|f v| d x \\
& \leq\|f\|_{L^{\frac{2 n}{n+2}}(\Omega)}\|v\|_{L^{\frac{2 n}{n-2}}(\Omega)}
\end{aligned}
$$

Then Sobolev embedding (Gagliardo-Nirenberg-Sobolev) tells us that

$$
\|v\|_{L^{\frac{2 n}{n-2}(\Omega)}} \leq C\|v\|_{H^{1}(\Omega)}
$$

so

$$
\left|\int_{\Omega} f v d x\right| \leq C\|f\|_{L^{\frac{2 n}{n+2}(\Omega)}}\|v\|_{H^{1}(\Omega)} .
$$

Therefore the linear functional $v \mapsto \int_{\Omega} f v d x$ is bounded on $H_{0}^{1}(\Omega)$. Now as we noted in class, Poincaré's inequality implies that

$$
B[u, v]=\int_{\Omega} \nabla u \cdot \nabla v d x
$$

is an inner product on H_{0}^{1}, so the Riesz representation theorem says that there exists $u \in H_{0}^{1}$ such that

$$
v \mapsto \int_{\Omega} f v d x=\int_{\Omega} \nabla u \cdot \nabla v d x
$$

for all $v \in H_{0}^{1}(\Omega)$. This is what we wanted.
(4) Let Ω be a smooth bounded domain and $b \in \mathbb{R}^{n}$ be a fixed vector. Show that there exists $C>0$ such that

$$
\|u\|_{L^{2}(\Omega)} \leq C\|b \cdot \nabla u\|_{L^{2}(\Omega)}
$$

for all $u \in H_{0}^{1}(\Omega)$. Explain why this doesn't hold for all $u \in H^{1}(\Omega)$.
Proof: We can pick coordinates such that b is a multiple of e_{1}, and without loss of generality, we can assume that $b=e_{1}$. Then $b \cdot \nabla u=u_{x_{1}}$. We can write $x=\left(x_{1}, x^{\prime}\right)$.

Now suppose $u \in C_{c}^{\infty}(\Omega)$. We can extend u by zero to all of \mathbb{R}^{n}. Since Ω is bounded, there exists c such that for each $x \in \Omega, x-c e_{1} \notin \Omega$. Therefore for each $x \in \Omega$

$$
u(x)=\int_{x_{1}-c}^{x_{1}} u_{x_{1}}\left(s, x^{\prime}\right) d s
$$

Then

$$
\begin{aligned}
|u(x)|^{2} & \leq C \int_{x_{1}-c}^{x_{1}}\left|u_{x_{1}}\left(s, x^{\prime}\right)\right|^{2} d s \\
& \leq C \int_{-\infty}^{\infty}\left|u_{x_{1}}\left(s, x^{\prime}\right)\right|^{2} d s
\end{aligned}
$$

so integrating both sides over Ω,

$$
\|u(x)\|_{L^{2}(\Omega)}^{2} \leq C_{\Omega} \int\left\|u_{x_{1}}\right\|_{L^{2}(\Omega)}^{2}
$$

This holds for $u \in C_{c}^{\infty}(\Omega)$. But by the density of $C_{c}^{\infty}(\Omega)$ in $H_{0}^{1}(\Omega)$ it extends to all $u \in H_{0}^{1}(\Omega)$, and so this is what we wanted to show.

It does not hold for all $u \in H^{1}(\Omega)$, since if u is a non-zero constant then the right side is zero but the left side is not.
(5) Let L be the differential operator defined by $L u=b \cdot \nabla u+c u$, where b and c are constant. Suppose that for any domain Ω of the form

$$
\Omega=\left\{x \in \mathbb{R}^{n} \mid x_{n}>f\left(x_{1}, \ldots, x_{n-1}\right)\right\}
$$

where f is smooth, there exists a constant $C_{\Omega}>0$ independent of b such that the inequality

$$
\|u\|_{L^{2}(\Omega)} \leq C_{\Omega}\left(\|L u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\partial \Omega)}\right)
$$

holds for all $u \in C^{1}(\Omega) \cap H^{1}(\Omega)$. Show then that for any smooth bounded domain Ω, a similar inequality holds provided that b is sufficiently small.

Proof: Let Ω be a smooth bounded domain. For each $x_{0} \in \partial \Omega$, there exists a neighbourhood U of x_{0} for which we can pick coordinates such that $U \subset \partial \Omega$ is a subset of a graph $\left\{x_{n}=f\left(x_{1}, \ldots, x_{n-1}\right)\right\}$ and $U \subset \Omega$ lies in the set

$$
\left\{x \in \mathbb{R}^{n} \mid x_{n}>f\left(x_{1}, \ldots, x_{n-1}\right)\right\}
$$

Since $\partial \Omega$ is compact, we can cover it with finitely many such neighbourhoods $\left\{U_{1}, \ldots U_{m}\right\}$. Adding another set U_{0} to cover the interior of Ω if necessary, we can take a partition of unity $\chi_{0}, \ldots \chi_{m}$ subordinate to $\left\{U_{0}, U_{1}, \ldots U_{m}\right\}$, and write

$$
u=\sum_{k=0}^{m} \chi_{k} u=: \sum_{k=0}^{m} u_{k} .
$$

Then each u_{k} is supported in a domain of the form given in the question, so

$$
\begin{aligned}
\left\|u_{k}\right\|_{L^{2}(\Omega)} & \leq C_{\Omega}\left(\left\|L u_{k}\right\|_{L^{2}(\Omega)}+\left\|u_{k}\right\|_{L^{2}(\partial \Omega)}\right) \\
& \leq C_{\Omega}\left(\left\|L u_{k}\right\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\partial \Omega)}\right)
\end{aligned}
$$

Now

$$
L u_{k}=\left(b \cdot \nabla \chi_{k}\right) u+\chi_{k} L u,
$$

so

$$
\left\|u_{k}\right\|_{L^{2}(\Omega)} \leq C_{\Omega}\left(\|L u\|_{L^{2}(\Omega)}-|b|\left\|\nabla \chi_{k}\right\|_{L^{\infty}}\|u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\partial \Omega)}\right) .
$$

Adding up over all k gives
$\|u\|_{L^{2}(\Omega)} \leq(m+1) C_{\Omega}\left(\|L u\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\partial \Omega)}\right)-(m+1) C_{\Omega}|b|\left\|\nabla \chi_{k}\right\|_{L^{\infty}}\|u\|_{L^{2}(\Omega)}$ and for small enough b depending only on Ω we can hide the last term in the right side of the inequality.

