
Math 633 Midterm
Answers

(1) Show that there exists C > 0 such that

|u(0)| ≤ C‖u‖W 1,1(R)

for any u ∈ C1(R) ∩ W 1,1(R). Explain how this inequality can be used to
extend the operator T : u 7→ u(0) to a bounded linear operator T : W 1,1(R)→
R with the bound

|T (u)| ≤ C‖u‖W 1,1(R).

Proof: Let u ∈ C1(R)∩W 1,1(R). Then the fundamental theorem of calculus
implies that

u(0) =

ˆ 0

−∞
u′(x) dx,

since u→ 0 as x→∞. Taking absolute values and applying basic inequalities,
we get that

(1) |u(0)| ≤
ˆ ∞
−∞
|u′(x)| dx ≤ ‖u‖W 1,1(R).

Now if v ∈ W 1,1(R), then there exists a sequence {vk} ⊂ C1(R) ∩W 1,1(R)
such that ‖vk− v‖W 1,1(R) → 0. Then the sequence {vk} is Cauchy in W 1,1(R),
and so the inequality (1) implies that the sequence vk(0) is Cauchy in R. We
can define

Tv = lim
k→∞

vk(0).

This is well defined, since if wk is another sequence in C1(R)∩W 1,1(R) which
converges to v, then (1) implies that

|vk(0)− wk(0)| ≤ ‖vk − wk‖W 1,1(R)

and so as k goes to infinity, |vk(0)− wk(0)| → 0.
Moreover for any ε > 0, there exists k such that

|Tv| ≤ |vk(0)|+ ε ≤ ‖vk‖W 1,1(R) + ε ≤ ‖v‖W 1,1(R) + 2ε,

and so

|Tv| ≤ ‖v‖W 1,1(R)

as required.
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(2) Suppose u ∈ W k,p(Rn) and η ∈ C∞c (Rn). Let |α| ≤ k. Show that

Dα(η ∗ u) = η ∗Dαu,

where Dα here indicates the weak derivative.

Proof: Let u, η, and α be as specified. Since η ∈ C∞c (Rn), we know that
η ∗ u is smooth, and thus Dα(η ∗ u) is a classical derivative. Now we have

Dα(η ∗ u)(x) = Dα

ˆ
Rn

η(x− y)u(y)dy

=

ˆ
Rn

Dα
xη(x− y)u(y)dy

with the switching of limits justified since η ∈ C∞c (Rn). Then

Dα(η ∗ u)(x) = (−1)|α|
ˆ
Rn

Dα
y η(x− y)u(y)dy

and now it follows from the definition of the weak derivative that

Dα(η ∗ u)(x) =

ˆ
Rn

η(x− y)Dα
y u(y)dy

= η ∗Dαu(x)

(3) Let Ω ⊂ Rn be a bounded open set with smooth boundary. Consider the
boundary value problem

−4u = f in Ω

u = 0 on ∂Ω.

(a) State what it means for u ∈ H1
0 (Ω) to be a weak solution of the boundary

value problem.

(b) Suppose f ∈ L
2n
n+2 (Ω), then show there exists a weak solution u ∈ H1

0 (Ω)
to the boundary value problem above.

Answer: u ∈ H1
0 (Ω) is a weak solution to the boundary value problem ifˆ

Ω

∇u · ∇v dx =

ˆ
Ω

fv dx

for every v ∈ H1
0 (Ω) (or every v ∈ C∞c (Ω): there are other equivalent state-

ments). As noted during the exam, the rest of this question requires n ≥ 3.
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Suppose f ∈ L
2n
n+2 (Ω). Then for v ∈ H1

0 (Ω), Hölder’s inequality gives us∣∣∣∣ˆ
Ω

fv dx

∣∣∣∣ ≤ ˆ
Ω

|fv| dx

≤ ‖f‖
L

2n
n+2 (Ω)

‖v‖
L

2n
n−2 (Ω)

Then Sobolev embedding (Gagliardo-Nirenberg-Sobolev) tells us that

‖v‖
L

2n
n−2 (Ω)

≤ C‖v‖H1(Ω)

so ∣∣∣∣ˆ
Ω

fv dx

∣∣∣∣ ≤ C‖f‖
L

2n
n+2 (Ω)

‖v‖H1(Ω).

Therefore the linear functional v 7→
´

Ω
fv dx is bounded on H1

0 (Ω). Now as
we noted in class, Poincaré’s inequality implies that

B[u, v] =

ˆ
Ω

∇u · ∇v dx

is an inner product on H1
0 , so the Riesz representation theorem says that there

exists u ∈ H1
0 such that

v 7→
ˆ

Ω

fv dx =

ˆ
Ω

∇u · ∇v dx

for all v ∈ H1
0 (Ω). This is what we wanted.

(4) Let Ω be a smooth bounded domain and b ∈ Rn be a fixed vector. Show that
there exists C > 0 such that

‖u‖L2(Ω) ≤ C‖b · ∇u‖L2(Ω)

for all u ∈ H1
0 (Ω). Explain why this doesn’t hold for all u ∈ H1(Ω).

Proof: We can pick coordinates such that b is a multiple of e1, and without
loss of generality, we can assume that b = e1. Then b · ∇u = ux1 . We can
write x = (x1, x

′).
Now suppose u ∈ C∞c (Ω). We can extend u by zero to all of Rn. Since Ω is

bounded, there exists c such that for each x ∈ Ω, x− ce1 /∈ Ω. Therefore for
each x ∈ Ω

u(x) =

ˆ x1

x1−c
ux1(s, x

′)ds
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Then

|u(x)|2 ≤ C

ˆ x1

x1−c
|ux1(s, x′)|2ds

≤ C

ˆ ∞
−∞
|ux1(s, x′)|2ds

so integrating both sides over Ω,

‖u(x)‖2
L2(Ω) ≤ CΩ

ˆ
‖ux1‖2

L2(Ω).

This holds for u ∈ C∞c (Ω). But by the density of C∞c (Ω) in H1
0 (Ω) it extends

to all u ∈ H1
0 (Ω), and so this is what we wanted to show.

It does not hold for all u ∈ H1(Ω), since if u is a non-zero constant then
the right side is zero but the left side is not.

(5) Let L be the differential operator defined by Lu = b · ∇u+ cu, where b and c
are constant. Suppose that for any domain Ω of the form

Ω = {x ∈ Rn|xn > f(x1, . . . , xn−1)},
where f is smooth, there exists a constant CΩ > 0 independent of b such that
the inequality

‖u‖L2(Ω) ≤ CΩ(‖Lu‖L2(Ω) + ‖u‖L2(∂Ω))

holds for all u ∈ C1(Ω) ∩ H1(Ω). Show then that for any smooth bounded
domain Ω, a similar inequality holds provided that b is sufficiently small.

Proof: Let Ω be a smooth bounded domain. For each x0 ∈ ∂Ω, there exists a
neighbourhood U of x0 for which we can pick coordinates such that U ⊂ ∂Ω
is a subset of a graph {xn = f(x1, . . . , xn−1)} and U ⊂ Ω lies in the set

{x ∈ Rn|xn > f(x1, . . . , xn−1)}.
Since ∂Ω is compact, we can cover it with finitely many such neighbourhoods
{U1, . . . Um}. Adding another set U0 to cover the interior of Ω if necessary, we
can take a partition of unity χ0, . . . χm subordinate to {U0, U1, . . . Um}, and
write

u =
m∑
k=0

χku =:
m∑
k=0

uk.

Then each uk is supported in a domain of the form given in the question, so

‖uk‖L2(Ω) ≤ CΩ(‖Luk‖L2(Ω) + ‖uk‖L2(∂Ω))

≤ CΩ(‖Luk‖L2(Ω) + ‖u‖L2(∂Ω))
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Now
Luk = (b · ∇χk)u+ χkLu,

so

‖uk‖L2(Ω) ≤ CΩ(‖Lu‖L2(Ω) − |b|‖∇χk‖L∞‖u‖L2(Ω) + ‖u‖L2(∂Ω)).

Adding up over all k gives

‖u‖L2(Ω) ≤ (m+ 1)CΩ(‖Lu‖L2(Ω) + ‖u‖L2(∂Ω))− (m+ 1)CΩ|b|‖∇χk‖L∞‖u‖L2(Ω)

and for small enough b depending only on Ω we can hide the last term in the
right side of the inequality.


