Problem Set 5

- (1) Reading: Read Section 6.1 and 6.2 to the end of 6.2.2 (page 320).
- (2) Do problems 2 and 3 in Section 6.6 of Evans.

There is a characterization of H^{-1} , defined as the dual space to H_0^1 , given in section 5.9 (pages 299-300). You should read this, but I prefer to think of H^{-1} in a different way.

(3) Suppose Ω is open and has C^1 boundary. Define

$$H^{-1}(\Omega) = \{ u \in L^1_{loc}(\Omega) | \int_{\Omega} uv < \infty \text{ for all } v \in H^1_0(\Omega) \}$$

with the dual norm

$$||u||_{H^{-1}(\Omega)} = \sup_{v \in H^{1}_{0}(\Omega)} \frac{\left|\int_{\Omega} uv\right|}{||v||_{H^{1}(\Omega)}}$$

Explain why $H^{-1}(\Omega)$ is isomorphic to the dual space of $H^1_0(\Omega)$, as Banach spaces.

(4) Show that for $u \in L^2(\Omega)$, we have $u \in H^{-1}(\Omega)$ and

$$||u||_{H^{-1}(\Omega)} \le ||u||_{L^2(\Omega)}$$

Moreover show that $|x|^{-\frac{1}{2}}$ is in $H^{-1}(-1,1)$ but not $L^2(-1,1)$, so that L^2 is in general a strict subset of H^{-1} .

(5) Show that if $u \in C^1(\overline{\Omega}) \cap L^2(\Omega)$, then

$$\|\partial_{x_1} u\|_{H^{-1}(\Omega)} \le \|u\|_{L^2(\Omega)}.$$

Conclude that ∂_{x_1} extends to a map $\partial_{x_1} : L^2(\Omega) \to H^{-1}(\Omega)$. The moral of this story is that H^{-1} contains the "derivatives of L^2 functions".

(6) Suppose Ω is bounded and open, with C^1 boundary, and show that if $f \in H^{-1}(\Omega)$, then there exists a weak solution $u \in H^1_0(\Omega)$ to the problem

$$\Delta u = f \text{ on } \Omega u|_{\partial\Omega} = 0.$$