Problem Set 7

(1) Reading: Read Section 5.8 .2 of Evans (pages 291-293), and Section 6.3 up to the end of the proof of Theorem 3 (page 334).
(2) Do question 12 from Section 5.10 of Evans and question 5 and 7 from Section 6.6 of Evans.
(3) Let U be a bounded open set in $\mathbb{R}^{n}, n \geq 2$, with smooth boundary. Consider the Neumann problem

$$
\begin{aligned}
-\triangle u & =f-u \text { on } U \\
\left.\partial_{\nu} u\right|_{\partial U} & =0
\end{aligned}
$$

where ν is the unit outward normal vector. Using the definition of weak solution from question 4 of Section 6.6 of Evans, show that this problem has a unique weak solution $u \in H^{1}(U)$ for each $f \in L^{2}(U)$.
(4) Let U be as in the previous question. Show that there exists an at most countable set $\Sigma \subset \mathbb{R}$ such that the problem

$$
\begin{aligned}
-\triangle u & =\lambda u+f \text { on } U \\
\left.\partial_{\nu} u\right|_{\partial U} & =0
\end{aligned}
$$

has a unique weak solution $u \in H^{1}(U)$ if and only if $\lambda \notin \Sigma$; show also that if Σ is not finite then it can be arranged in a non-decreasing sequence which goes to infinity. Note that $0 \in \Sigma$, by question 4 of Section 6.6 of Evans.

