Problem Set 8

- (1) Reading: Section 6.3 from Theorem 4 (p334) up until the end of the section, and Section 6.4 up to the end of Theorem 2 (page 347).
- (2) Do question 8 and 12 from Section 6.6 of Evans.
- (3) Suppose Ω is a bounded domain in \mathbb{R}^n with smooth boundary, and let $\Gamma \subset \partial \Omega$ be an open subset of $\partial \Omega$. Suppose $\Delta u = 0$ on Ω , and $u = \partial_{\nu} u = 0$ on Γ . Show that $u \equiv 0$ on Ω . Hint: Let Ω_2 be a bounded domain with smooth boundary in \mathbb{R}^n which contains Ω , such that $\partial \Omega \setminus \Gamma \subset \partial \Omega_2$. Extend u to be a function on Ω_2 with $u \equiv 0$ on $\Omega_2 \setminus \Omega$. What's special about this extension?
- (4) Suppose U is a smooth bounded domain in \mathbb{R}^n , and $u \in C(\overline{\Omega})$ has the property that

$$\int_{\Omega} u \triangle v = 0$$

for all $v \in C_c^{\infty}(\Omega)$. Does it follow that u is harmonic on Ω ? Hint: This is hard.