## Math 633 Sample Midterm

Do at least three of the following five questions. If you complete more than three questions, your grade will be based on the best three.
(1) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set with smooth boundary. Consider the boundary value problem

$$
\begin{aligned}
-\Delta u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

(a) State what it means for $u \in H_{0}^{1}(\Omega)$ to be a weak solution of the boundary value problem.
(b) Show that if $f \in L^{\frac{2 n}{n+2}}(\Omega)$, then there exists a weak solution $u \in H_{0}^{1}(\Omega)$ to the boundary value problem above.
(2) Suppose $u \in W^{1, p}(\mathbb{R})$ for $1<p<\infty$. Prove that $u$ is Hölder continuous with exponent $1-1 / p$, and

$$
|u(x)-u(y)| \leq|x-y|^{1-1 / p}\left\|u^{\prime}\right\|_{L^{p}(\mathbb{R})}
$$

for all $x, y \in \mathbb{R}$. Here $u^{\prime}$ indicates the weak derivative.
(3) (a) Give the definition of the Sobolev spaces $W^{1, p}(B(0,1))$ and $W_{0}^{1, p}(B(0,1))$.
(b) Let $u \in W^{1,2}(B(0,1))$ and suppose that

$$
\lim _{x \rightarrow y} \sup u(x) \leq 0 \text { for all } y \in \partial B(0,1)
$$

Show that $u^{+}=\max (u, 0) \in W_{0}^{1,2}(B(0,1))$.
(4) Suppose that $\Omega \in \mathbb{R}^{n}$ is a bounded domain, and $A_{i j} \in C^{\infty}(\Omega)$ for each $1 \leq i, j \leq n$. Let

$$
L u=-\nabla \cdot(A \nabla u)
$$

where $A$ is symmetric and positive definite. Suppose that $f \in L^{2}(\Omega)$ and $u$ is a weak solution to

$$
\begin{aligned}
L u & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

Show that there exists some constants $C_{1}, C_{2}>0$ such that

$$
C_{1} \int_{\Omega}|u|^{2} d x \leq \int_{\Omega}|\nabla u|^{2} d x \leq C_{2} \int_{\Omega}\left(f^{2}+u^{2}\right) d x .
$$

(5) Suppose that $u \in C^{1}\left(\mathbb{R}_{+}^{n}\right) \cap W^{1, p}\left(\mathbb{R}_{+}^{n}\right)$. Show that

$$
\|u\|_{L^{p}\left(\partial \mathbb{R}_{+}^{n}\right)} \leq C\|u\|_{W^{1, p}\left(\mathbb{R}_{+}^{n}\right)}
$$

for some $C \in \mathbb{R}^{n}$. Explain why this implies that the map $T:\left.u \rightarrow u\right|_{\partial \mathbb{R}_{+}^{n}}$ extends to a map $T: W^{1, p}\left(\mathbb{R}_{+}^{n}\right) \rightarrow L^{p}\left(\partial \mathbb{R}_{+}^{n}\right)$.

