
1. Review

The final exam in this class will be on Monday May 1 from 8-10am and will cover
all material from this class, albeit with an emphasis on material covered since the last
midterm. Roughly speaking, the material in this class is divided into three major sections,
of unequal weight.

1.1. Measure and Integration. This is basically the midterm material: Lebesgue mea-
sure, the Lebesgue integral, and the convergence theorems, together with Fubini’s theorem.
Topics in this section include outer measure, measurable sets, Lebesgue measure on Rn;
measurable fuctions, Lebesgue integrals; dominated convergence, monotone convergence,
Fatou’s lemma; and Fubini’s theorem. See also the midterm review sheet.

1.2. Function spaces as metric spaces. The second major topic is our introduction to
sets of functions as metric spaces. You should be familiar not only with the basic properties
of metric spaces, but also with C(Rn), L1(Rn), Lp(Rn), and their basic properties. The
`p spaces are not so much a part of this course per se, but are a good source of examples,
and they may make an appearance on the exam.

1.3. Differentiability of the integral. Here the main topics are the Lebesgue Differ-
entiation Theorem and the absolutely continuous functions. The differentiation theorem
in particular serves as an excellent introduction to a number of important ideas from
harmonic analysis: covering lemmas, maximal functions, etc. and you should be familiar
with the main ideas in the proof. The same goes for the main theorem of absolute con-
tinuity, namely that absolutely continuous functions are the ones that satisfy the second
fundamental theorem of calculus.

Below I’ve listed twelve problems which are roughly representative of the material we’ve
covered and the kind of problem I expect you to be able to do. Two of these (or parts of
two of these) will make an appearance on the exam in whole or in part. Nevertheless, you
should not limit your study to these problems only.

Problem 1. Show that a set A ⊂ Rn is measurable if and only if for every ε > 0 there
exists a compact set K such that K ⊆ A and

m∗(A \K) ≤ ε.

Problem 2. Suppose A ⊂ Rn has finite measure, and f : A → R is a bounded function.
Show that there exists a sequence {gk} of ISFs such that gk → f pointwise. Do the same
when f : Rn → R is a general integrable function.

Problem 3. Prove the Dominated Convergence Theorem in the case where the dominating
function g is an ISF. Use this result to prove the Dominated Convergence Theorem in
general.
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Problem 4. Suppose f ∈ L1(R) and g ∈ C1(R). Show that

f ∗ g(x) =

∫
f(y)g(x− y)dy

is differentiable (at every x ∈ R).

Problem 5. Suppose f : R2 → R is nonnegative and∫ (∫
f(x, y)dx

)
dy = 1.

Show that f is integrable. By means of a counterexample, show that the nonnegativity
condition here is necessary.

Problem 6. Suppose (X, d) is a metric space, and {an} and {bn} are Cauchy. Show that
the sequence {d(an, bn)} ⊂ R converges.

Problem 7. Show that C(R) is complete.

Problem 8. Show that L1(R) is complete.

Problem 9. Suppose f ∈ L1(Rn), and define fh : Rn → R by fh(x) = f(x + h). Show
that

lim
h→0
‖fh − f‖L1(Rn) = 0.

By means of a counterexample, show that this does not hold if L1 is replaced by L∞.

Problem 10. Suppose f ∈ L1(Rn). Show that

m({x ∈ Rn|Mf(x) > α}) < 3n

α
‖f‖L1(Rn)

for all α > 0. Here Mf is the Hardy-Littlewood maximal function.

Problem 11. Use the previous problem to prove the Lebesgue differentiation theorem.

Problem 12. Let f : R → R be integrable. Show that for every ε > 0 there exists δ > 0
such that if E ⊂ R has m(E) < δ, then∫

E

|f | < ε.

Use this to prove that

F (x) =

∫ x

a

f(t)dt

is absolutely continuous.


