1. Problem Set 1

Problem 1. Show that $m^*((0,1)) = 1$.

Problem 2. Suppose $A \subset \mathbb{R}$ and $h \in \mathbb{R}$. Define $A + h = \{a + h | a \in A\}$. Show that $m^*(A) = m^*(A + h)$.

The next two questions consider the Cantor set E defined by the following process: Define $E_0 = [0,1]$, and $E_1 = [0,1/3] \cup [2/3,1]$, so E_1 consists of E_0 with the middle third removed. Continue the process, defining E_{j+1} by removing the middle third of each interval in E_j : so $E_2 = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$, etc. Finally, define

$$E = \bigcap_{j=1}^{\infty} E_j.$$

Problem 3. Show that $x \in E$ if and only if x is a limit point of E. Note in particular that E is closed.

Problem 4. Show that $m^*(E) = 0$.

Problem 5. Consider the set F defined in the same manner as E, except that at the k^{th} step we remove not the middle third but the middle interval of length 2^{-2k} . (This is sometimes called a fat Cantor set.) Show that $m^*(F) = 1/2$.

Problem 6. Suppose $m^*(A) = 0$. Show that A is measureable.

Problem 7. Suppose that $B \subset \mathbb{R}$ has the property that for every $\varepsilon > 0$ there exist measureable $A, C \subset \mathbb{R}$ such that $A \subset B \subset C$ and $m(C \cap A^c) < \varepsilon$. Show that B is measureable.