1. Problem Set 1

Problem 1. Show that $m^{*}((0,1))=1$.
Problem 2. Suppose $A \subset \mathbb{R}$ and $h \in \mathbb{R}$. Define $A+h=\{a+h \mid a \in A\}$. Show that $m^{*}(A)=m^{*}(A+h)$.

The next two questions consider the Cantor set E defined by the following process: Define $E_{0}=[0,1]$, and $E_{1}=[0,1 / 3] \cup[2 / 3,1]$, so E_{1} consists of E_{0} with the middle third removed. Continue the process, defining E_{j+1} by removing the middle third of each interval in E_{j} : so $E_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$, etc. Finally, define

$$
E=\cap_{j=1}^{\infty} E_{j} .
$$

Problem 3. Show that $x \in E$ if and only if x is a limit point of E. Note in particular that E is closed.

Problem 4. Show that $m^{*}(E)=0$.
Problem 5. Consider the set F defined in the same manner as E, except that at the $k^{\text {th }}$ step we remove not the middle third but the middle interval of length $2^{-2 k}$. (This is sometimes called a fat Cantor set.) Show that $m^{*}(F)=1 / 2$.
Problem 6. Suppose $m^{*}(A)=0$. Show that A is measureable.
Problem 7. Suppose that $B \subset \mathbb{R}$ has the property that for every $\varepsilon>0$ there exist measureable $A, C \subset \mathbb{R}$ such that $A \subset B \subset C$ and $m\left(C \cap A^{c}\right)<\varepsilon$. Show that B is measureable.

