1. Problem Set 10

Problem 1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the characteristic function of the unit ball centered at the origin in \mathbb{R}^{n}. Show that there exists a constant c such that

$$
\frac{c}{\alpha} \leq m(\{x \mid M f(x)>\alpha\})
$$

for all sufficiently small $\alpha>0$. (Note that by the Hardy-Littlewood theorem, it follows that

$$
\frac{c}{\alpha} \leq m(\{x \mid M f(x)>\alpha\}) \leq \frac{3^{n}}{\alpha}
$$

for all sufficiently small α.)
Problem 2. Suppose f is integrable on \mathbb{R}^{n}. Show that $M f \in L^{1}\left(\mathbb{R}^{n}\right)$ if and only if f is identically zero. (Hint: show that

$$
M f(x) \geq \frac{C}{|x|^{n}+1}
$$

for some constant C.)
Problem 3. Let $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, and let $Q_{\alpha}(x)$ be the n-cube of side length α in \mathbb{R}^{n} centred at x. Show that

$$
\lim _{\alpha \rightarrow 0} \frac{1}{\alpha^{n}} \int_{Q_{\alpha}(x)} f(y) d y=f(x)
$$

for almost every $x \in \mathbb{R}^{n}$.
Problem 4. Let $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies the inequalities

$$
\chi_{[-1,1]} \leq \Phi \leq 2 \chi_{-2,2}
$$

and let $\Phi_{t}(x)=t^{-1} \Phi(x / t)$ for $t>0$. Show that there exists a constant C depending only on Φ such that for any $f \in L^{1}(\mathbb{R})$,

$$
\lim _{t \rightarrow 0+} f * \Phi_{t}(x)=C f(x)
$$

for almost every $x \in \mathbb{R}$.
Problem 5. Suppose E is a measurable set and

$$
m(E \cap B) \geq \frac{1}{2} m(B)
$$

for all balls B. Show that $m\left(E^{c}\right)=0$. (Hint: Apply the Lebesgue differentiation theorem to a well-chosen characteristic function.)
Problem 6. Let $x \in \mathbb{R}^{2}, \alpha>0$. Fix coordinates $\left(x_{1}, x_{2}\right)$ in \mathbb{R}^{2} and define $R_{\alpha}(x)$ to be the rectangle

$$
R_{\alpha}=(x-\sqrt{\alpha}, x+\sqrt{\alpha}) \times(x-\alpha, x+\alpha)
$$

Find an integrable function f such that

$$
\lim _{\alpha \rightarrow 0} \frac{1}{m\left(R_{\alpha}(x)\right)} \int_{R_{\alpha}(x)} f(y) d y \neq f(x)
$$

for all x in a set E of positive measure, or show that no such f exists.

Problem 7. Give an example of a function which is absolutely continuous but not Lipschitz.

