Problem 1. Show that replacing open intervals with closed intervals in the definition of outer measure yields an equivalent definition.

Problem 2. Show that A is measureable if and only if for every $\varepsilon > 0$ there exists an open set U such that $A \subseteq U$ and $m^*(U \setminus A) < \varepsilon$.

Problem 3. Show that A is measureable if and only if for every $\varepsilon > 0$ there exists a closed set E such that $E \subseteq A$ and $m^*(A \setminus E) < \varepsilon$.

Problem 4. Suppose $\{A_k\}, \{B_k\}$ are countable collections of measureable sets with finite measure. Suppose moreover that $A_1 \subset A_2 \subset \ldots$ and $B_1 \supset B_2 \supset \ldots$ Show that

$$m\left(\cup_{k=1}^{\infty}A_k\right) = \lim_{k \to \infty} m(A_k)$$

and

$$m\left(\bigcap_{k=1}^{\infty}B_k\right) = \lim_{k \to \infty} m(B_k).$$

Problem 5. Suppose that $\{A_k\}$ is a countable collection of sets. Define

$$\limsup_{k \to \infty} A_k = \{ x | x \in A_n \text{ for infinitely many } n \in \mathbb{N} \}$$

and

$$\liminf_{k \to \infty} A_k = \{ x | x \in A_n \text{ for all but finitely many } n \in \mathbb{N} \}$$

Find an example to show that

$$\liminf_{k \to \infty} A_k \neq \limsup_{k \to \infty} A_k$$

in general.

Problem 6. Suppose that $\{A_k\}$ is a countable collection of measureable sets. Show that $\liminf_{k\to\infty} A_k$ and $\limsup_{k\to\infty} A_k$ are measureable.

Problem 7. Suppose that $\{A_k\}$ is a countable collection of measureable sets, with the property that

$$\sum_{n=1}^{\infty} m(A_k) < \infty.$$

Show that $m\left(\limsup_{k\to\infty}A_k\right) = 0.$

Problem 8. Let $A \subset \mathbb{R}$ be a set with the property that $m^*(A) > 0$. Show that for each $0 < \alpha < 1$ there exists an open interval I such that

$$m^*(A \cap I) \ge \alpha m^*(I).$$

(You can think of this as saying that A must contain "most of an interval".)