1. Problem Set 6

Problem 1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Show that the graph of f has measure zero in \mathbb{R}^{2} : that is, show that the set

$$
\operatorname{graph}(f)=\{(x, f(x)) \mid x \in \mathbb{R}\}
$$

has measure zero.
Problem 2. Does the result of Problem 1 hold for arbitrary functions $f: \mathbb{R} \rightarrow \mathbb{R}$?
Problem 3. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is integrable. Let $a>0$ and define $f_{a}(x)=f(a x)$. Show that

$$
a^{n} \int_{\mathbb{R}^{n}} f_{a}=\int_{\mathbb{R}^{n}} f .
$$

Problem 4. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is an integrable function. Define the Fourier transform of f by

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

Show that $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is bounded and continuous. (Here i is the imaginary number $\sqrt{-1}$, but the complex character of the function shouldn't bother you too much as long as you know that $e^{i x}=\cos (x)+i \sin (x)$.)
Problem 5. Suppose f and g are integrable functions on \mathbb{R}^{n}. Show that $f(x-y) g(y)$ is integrable on $\mathbb{R}^{2 n}$. Use this fact to show that the convolution

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y
$$

is defined for almost every $x \in \mathbb{R}^{n}$.
Problem 6. Suppose f and g are integrable functions on \mathbb{R}^{n}. Show that the convolution $f * g$ is integrable.

