1. Problem Set 6

Problem 1. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous. Show that the graph of f has measure zero in \mathbb{R}^2 : that is, show that the set

$$graph(f) = \{(x, f(x)) | x \in \mathbb{R}\}$$

has measure zero.

Problem 2. Does the result of Problem 1 hold for arbitrary functions $f : \mathbb{R} \to \mathbb{R}$?

Problem 3. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is integrable. Let a > 0 and define $f_a(x) = f(ax)$. Show that

$$a^n \int_{\mathbb{R}^n} f_a = \int_{\mathbb{R}^n} f.$$

Problem 4. Suppose $f : \mathbb{R}^n \to \mathbb{C}$ is an integrable function. Define the Fourier transform of f by

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx.$$

Show that $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ is bounded and continuous. (Here *i* is the imaginary number $\sqrt{-1}$, but the complex character of the function shouldn't bother you too much as long as you know that $e^{ix} = \cos(x) + i\sin(x)$.)

Problem 5. Suppose f and g are integrable functions on \mathbb{R}^n . Show that f(x-y)g(y) is integrable on \mathbb{R}^{2n} . Use this fact to show that the convolution

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$$

is defined for almost every $x \in \mathbb{R}^n$.

Problem 6. Suppose f and g are integrable functions on \mathbb{R}^n . Show that the convolution f * g is integrable.