## 1. Problem Set 7

Problem 1. Suppose $f: \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}$ is measurable, and define $F: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}$ by

$$
F(x, y)=f(x)
$$

Show that $F$ is measurable.
Problem 2. Suppose $f: \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}$ are integrable functions, and define $F: \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}} \rightarrow \mathbb{R}$ by

$$
F(x, y)=f(x) g(y)
$$

Show that $F$ is integrable.
Problem 3. Suppose $f$ and $g$ are integrable functions on $\mathbb{R}^{n}$. Show that $f(x-y) g(y)$ is integrable on $\mathbb{R}^{2 n}$. Use this fact to show that the convolution

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y
$$

is defined for almost every $x \in \mathbb{R}^{n}$.
Problem 4. Suppose $f$ and $g$ are integrable functions on $\mathbb{R}^{n}$. Show that the convolution $f * g$ is integrable.
Problem 5. Suppose $f$ and $g$ are integrable on $\mathbb{R}^{n}$. Show that

$$
\lim _{x \rightarrow \infty} f * g(x)=0 .
$$

Recall from the previous problem set that if $f$ is integrable, then Fourier transform

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

is defined, bounded, and continuous.
Problem 6. Show that $\widehat{f * g}=\hat{f} \hat{g}$.
Problem 7. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an integrable function. Show that there exists $a$ sequence of functions $\left\{f_{k}\right\}$ of the form

$$
f_{k}=\sum_{n=1}^{N} a_{k} \chi_{U_{k}}
$$

where $U_{k}$ are open sets of finite measure, such that $f_{k} \rightarrow f$ pointwise, except possibly on a set of measure zero.

Problem 8. Show that

$$
\lim _{|\xi| \rightarrow \infty} \hat{f}(\xi)=0
$$

(This is the Riemann-Lebesgue lemma.)

