1. Problem Set 7

Problem 1. Suppose $f : \mathbb{R}^{n_1} \to \mathbb{R}$ is measurable, and define $F : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$ by

$$F(x,y) = f(x)$$

Show that F is measurable.

Problem 2. Suppose $f : \mathbb{R}^{n_1} \to \mathbb{R}$ and $g : \mathbb{R}^{n_2} \to \mathbb{R}$ are integrable functions, and define $F : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}$ by

$$F(x,y) = f(x)g(y).$$

Show that F is integrable.

Problem 3. Suppose f and g are integrable functions on \mathbb{R}^n . Show that f(x-y)g(y) is integrable on \mathbb{R}^{2n} . Use this fact to show that the convolution

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$$

is defined for almost every $x \in \mathbb{R}^n$.

Problem 4. Suppose f and g are integrable functions on \mathbb{R}^n . Show that the convolution f * g is integrable.

Problem 5. Suppose f and g are integrable on \mathbb{R}^n . Show that

$$\lim_{x \to \infty} f * g(x) = 0.$$

Recall from the previous problem set that if f is integrable, then Fourier transform

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx$$

is defined, bounded, and continuous.

Problem 6. Show that $\widehat{f * g} = \widehat{f}\widehat{g}$.

Problem 7. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is an integrable function. Show that there exists a sequence of functions $\{f_k\}$ of the form

$$f_k = \sum_{n=1}^N a_k \chi_{U_k},$$

where U_k are open sets of finite measure, such that $f_k \to f$ pointwise, except possibly on a set of measure zero.

Problem 8. Show that

$$\lim_{\xi \to \infty} \hat{f}(\xi) = 0$$

(This is the Riemann-Lebesgue lemma.)