1. Problem Set 8

Problem 1. Find a sequence of functions $\left\{f_{k}\right\} \subset L^{1}(\mathbb{R})$ such that $f_{k} \rightarrow f$ in L^{1} but $f_{k}(x)$ does not converge to $f(x)$ at any x.

Problem 2. Suppose $1 \leq p, q<\infty$. Show that $L^{p}(\mathbb{R})$ is contained in $L^{q}(\mathbb{R})$ if and only if $p=q$.

Problem 3. Define $C_{c}^{k}\left(\mathbb{R}^{n}\right)$ to be the set of compactly supported continuous functions on \mathbb{R}^{n} whose $j^{\text {th }}$ partial derivatives are continuous, for $1 \leq j \leq k$. Show that $C_{c}^{k}\left(\mathbb{R}^{n}\right)$ is dense in $L^{1}\left(\mathbb{R}^{n}\right)$.
Problem 4. Suppose $f, g \in L^{1}(\mathbb{R})$. Define $F(x)=\int_{-\infty}^{x} f$ and $G(x)=\int_{-\infty}^{x} g$. (Why are these defined?) Show that

$$
\int_{a}^{b} F g=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f G
$$

Problem 5. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Define the essential supremum of f by

$$
E S(f)=\inf \left\{a \mid m\left(|f|^{-1}(a, \infty)\right)=0\right\}
$$

Show that if $|f(x)|<M$ almost everywhere, then $E S(f)$ exists and is bounded above by M.

Problem 6. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is integrable and $|f(x)|<M$ almost everywhere. Show that $f \in L^{p}\left(\mathbb{R}^{n}\right)$ for all $p>1$,

$$
\lim _{p \rightarrow \infty}\left(\int_{\mathbb{R}^{n}}|f|^{p}\right)^{1 / p}=E S(f)
$$

Problem 7. The previous problem justifies the usual definition of $L^{\infty}\left(\mathbb{R}^{n}\right)$:

$$
L^{\infty}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \mid E S(f)<\infty\right\} / f \sim g \text { if } f=g \text { a.e. }
$$

with the norm

$$
\|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}=E S(f)
$$

and the distance

$$
d(f, g)=\|f-g\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}
$$

Show that $L^{\infty}\left(\mathbb{R}^{n}\right)$ is a metric space.

