1. Problem Set 8

Problem 1. Find a sequence of functions $\{f_k\} \subset L^1(\mathbb{R})$ such that $f_k \to f$ in L^1 but $f_k(x)$ does not converge to f(x) at any x.

Problem 2. Suppose $1 \le p, q < \infty$. Show that $L^p(\mathbb{R})$ is contained in $L^q(\mathbb{R})$ if and only if p = q.

Problem 3. Define $C_c^k(\mathbb{R}^n)$ to be the set of compactly supported continuous functions on \mathbb{R}^n whose j^{th} partial derivatives are continuous, for $1 \leq j \leq k$. Show that $C_c^k(\mathbb{R}^n)$ is dense in $L^1(\mathbb{R}^n)$.

Problem 4. Suppose $f, g \in L^1(\mathbb{R})$. Define $F(x) = \int_{-\infty}^x f$ and $G(x) = \int_{-\infty}^x g$. (Why are these defined?) Show that

$$\int_{a}^{b} Fg = F(b)G(b) - F(a)G(a) - \int_{a}^{b} fG.$$

Problem 5. Suppose $f : \mathbb{R}^n \to \mathbb{R}$. Define the essential supremum of f by

$$ES(f) = \inf\{a|m(|f|^{-1}(a,\infty)) = 0\}.$$

Show that if |f(x)| < M almost everywhere, then ES(f) exists and is bounded above by M.

Problem 6. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is integrable and |f(x)| < M almost everywhere. Show that $f \in L^p(\mathbb{R}^n)$ for all p > 1,

$$\lim_{p \to \infty} \left(\int_{\mathbb{R}^n} |f|^p \right)^{1/p} = ES(f)$$

Problem 7. The previous problem justifies the usual definition of $L^{\infty}(\mathbb{R}^n)$:

$$L^{\infty}(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R} | ES(f) < \infty \} / f \sim g \text{ if } f = g \text{ a.e.}$$

with the norm

$$||f||_{L^{\infty}(\mathbb{R}^n)} = ES(f)$$

and the distance

$$d(f,g) = \|f - g\|_{L^{\infty}(\mathbb{R}^n)}.$$

Show that $L^{\infty}(\mathbb{R}^n)$ is a metric space.