1. Problem Set 9 – Fourier Series

This problem set is dedicated to proving the following claim: the set $\{e^{inx}\}_{n\in\mathbb{Z}}$ forms an orthonormal basis of $L^2[-\pi,\pi]$. In particular, any $f \in L^2[-\pi,\pi]$ can be written (uniquely) as a sum

$$f(x) = \sum_{n = -\infty}^{\infty} a_n e^{inx}$$

with

$$||f||_{L^2[-\pi,\pi]} = ||\{a_n\}||_{\ell^2}.$$

This is an incredibly useful fact to know for solving differential equations, since derivatives (and integrals) of e^{inx} are so easy to calculate.

In this problem set we will define $L^2[-\pi,\pi]$ to be the set of *complex valued* functions for which $|f(x)|^2$ is integrable. You may need to use the fact that $C_c^1[-\pi,\pi]$ is dense in $L^p[-\pi,\pi]$ for $1 \le p \le \infty$.

Problem 1. Let $m, n \in \mathbb{Z}$. Define the Kronecker delta, δ_{mn} , to be 1 when m = n and zero otherwise. Prove that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{imx} e^{-inx} dx = \delta_{mn}.$$

You can interpret this from a linear algebra point of view: if we define the inner product of two functions f, g on the interval $[-\pi, \pi]$ by the integral

$$(f,g) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)\overline{g}(x)dx,$$

then what we have just shown is that the set of all e^{inx} , $n \in \mathbb{Z}$, forms an orthonormal set.

Problem 2. Suppose that $f(x) = \sum_{n=-N}^{N} a_n e^{inx}$, where $a_n \in \mathbb{C}$. Show that

$$||f||_{L^2([-\pi,\pi])}^2 = 2\pi \sum_{n=-N}^N |a_n|^2,$$

and moreover, that

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

Problem 3. Now suppose $f \in L^1([-\pi, \pi])$. Define

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx,$$

and show that

$$\lim_{n \to \pm \infty} a_n = 0.$$

(Hint: first do this for $f \in C_c^1$, and then use the density fact stated in the introduction. The result of this problem is sometimes called the Riemann-Lebesgue lemma.) **Problem 4.** Suppose $f \in C_c^1([-\pi,\pi])$, and define a_n as in the previous question. Define

$$S_N(x) = \sum_{n=-N}^N a_n e^{inx}$$

Show that for each $x \in (-\pi, \pi)$,

$$S_N(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(x-y) f(y) dy$$

where

$$K_N(\theta) = \frac{\sin((N + \frac{1}{2})\theta)}{\sin(\frac{1}{2}\theta)}$$

Hint: Use Fubini, and sum a geometric series.

Problem 5. Show that K_N is continuous, and

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\theta) d\theta = 1.$$

(*Hint: use the series form of* $K_{N.}$) Now show that for $f \in C_c^1([-\pi, \pi])$,

$$S_N(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\theta) [\tilde{f}(x+\theta) - \tilde{f}(x)] d\theta$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin((N+1/2)(\theta)) \left[\frac{\tilde{f}(x+\theta) - \tilde{f}(x)}{\sin(\frac{1}{2}\theta)} \right] d\theta$$

for each $x \in (-\pi, \pi)$. Here \tilde{f} is the periodic extension of f to the whole real line.

Problem 6. Show that for $f \in C_c^1([-\pi, \pi])$, we have $S_N \to f$ uniformly on $[-\pi, \pi]$. Hint: think about your reasoning for question 3.

Problem 7. Now show that for $f \in L^2([-\pi, \pi])$, $\lim_{N \to \infty} \|S_N - f\|_{L^2([\pi, -\pi])} = 0.$

Problem 8. Reinterpreting the previous problem, we have

$$f(x) = \sum_{n \in \mathbb{Z}} a_n e^{inx}$$

in the L^2 sense, where

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

Show that $\{a_n\} \in \ell^2$, and

$$\|\{a_n\}\|_{\ell^2} = \|f\|_{L^2[-\pi,\pi]}$$