1. Problem Set 9 - Fourier Series

This problem set is dedicated to proving the following claim: the set $\left\{e^{i n x}\right\}_{n \in \mathbb{Z}}$ forms an orthonormal basis of $L^{2}[-\pi, \pi]$. In particular, any $f \in L^{2}[-\pi, \pi]$ can be written (uniquely) as a sum

$$
f(x)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n x}
$$

with

$$
\|f\|_{L^{2}[-\pi, \pi]}=\left\|\left\{a_{n}\right\}\right\|_{\ell^{2}} .
$$

This is an incredibly useful fact to know for solving differential equations, since derivatives (and integrals) of $e^{i n x}$ are so easy to calculate.

In this problem set we will define $L^{2}[-\pi, \pi]$ to be the set of complex valued functions for which $|f(x)|^{2}$ is integrable. You may need to use the fact that $C_{c}^{1}[-\pi, \pi]$ is dense in $L^{p}[-\pi, \pi]$ for $1 \leq p \leq \infty$.

Problem 1. Let $m, n \in \mathbb{Z}$. Define the Kronecker delta, $\delta_{m n}$, to be 1 when $m=n$ and zero otherwise. Prove that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i m x} e^{-i n x} d x=\delta_{m n}
$$

You can interpret this from a linear algebra point of view: if we define the inner product of two functions f, g on the interval $[-\pi, \pi]$ by the integral

$$
(f, g)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \bar{g}(x) d x
$$

then what we have just shown is that the set of all $e^{i n x}, n \in \mathbb{Z}$, forms an orthonormal set.
Problem 2. Suppose that $f(x)=\sum_{n=-N}^{N} a_{n} e^{i n x}$, where $a_{n} \in \mathbb{C}$. Show that

$$
\|f\|_{L^{2}([-\pi, \pi])}^{2}=2 \pi \sum_{n=-N}^{N}\left|a_{n}\right|^{2},
$$

and moreover, that

$$
a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Problem 3. Now suppose $f \in L^{1}([-\pi, \pi])$. Define

$$
a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

and show that

$$
\lim _{n \rightarrow \pm \infty} a_{n}=0 .
$$

(Hint: first do this for $f \in C_{c}^{1}$, and then use the density fact stated in the introduction. The result of this problem is sometimes called the Riemann-Lebesgue lemma.)

Problem 4. Suppose $f \in C_{c}^{1}([-\pi, \pi])$, and define a_{n} as in the previous question. Define

$$
S_{N}(x)=\sum_{n=-N}^{N} a_{n} e^{i n x}
$$

Show that for each $x \in(-\pi, \pi)$,

$$
S_{N}(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(x-y) f(y) d y
$$

where

$$
K_{N}(\theta)=\frac{\sin \left(\left(N+\frac{1}{2}\right) \theta\right)}{\sin \left(\frac{1}{2} \theta\right)}
$$

Hint: Use Fubini, and sum a geometric series.
Problem 5. Show that K_{N} is continuous, and

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(\theta) d \theta=1
$$

(Hint: use the series form of $\left.K_{N}.\right)$ Now show that for $f \in C_{c}^{1}([-\pi, \pi])$,

$$
\begin{aligned}
S_{N}(x)-f(x) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{N}(\theta)[\tilde{f}(x+\theta)-\tilde{f}(x)] d \theta \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin ((N+1 / 2)(\theta))\left[\frac{\tilde{f}(x+\theta)-\tilde{f}(x)}{\sin \left(\frac{1}{2} \theta\right)}\right] d \theta
\end{aligned}
$$

for each $x \in(-\pi, \pi)$. Here \tilde{f} is the periodic extension of f to the whole real line.
Problem 6. Show that for $f \in C_{c}^{1}([-\pi, \pi])$, we have $S_{N} \rightarrow f$ uniformly on $[-\pi, \pi]$. Hint: think about your reasoning for question 3.
Problem 7. Now show that for $f \in L^{2}([-\pi, \pi])$,

$$
\lim _{N \rightarrow \infty}\left\|S_{N}-f\right\|_{L^{2}([\pi,-\pi])}=0 .
$$

Problem 8. Reinterpreting the previous problem, we have

$$
f(x)=\sum_{n \in \mathbb{Z}} a_{n} e^{i n x}
$$

in the L^{2} sense, where

$$
a_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Show that $\left\{a_{n}\right\} \in \ell^{2}$, and

$$
\left\|\left\{a_{n}\right\}\right\|_{\ell^{2}}=\|f\|_{L^{2}[-\pi, \pi]} .
$$

