
Preliminaries and Background

In these notes the notation ∂αx should be interpreted as follows: α is a multiindex
α = (α1, . . . αn), with each αi being a nonnegative integer. Then

∂αx = ∂α1
x1
· · · ∂αn

xn .

In this context |α| = α1 + . . .+ αn.

1. Spaces

Most of this course concerns functions on a domain Ω ⊂ Rn. Unless otherwise stated,
we will generally assume that Ω is a bounded open set in Rn with smooth boundary.

Most of the theorems in this course concern one of the following function spaces:

1.1. Ck Spaces. (k-times differentiable functions)
We define Ck(Ω) to be the space of functions on Ω which are k times differentiable and

whose kth derivatives are continuous. The space Ck(Ω) has the natural norm

‖f‖Ck(Ω) =
∑
|α|≤k

sup
Ω
|∂αx f(x)|.

The notation C∞(Ω) refers to the space of smooth (infinitely differentiable) functions on
Ω. It has a natural metric too (exercise: what is it?) but people don’t normally think of
it this way.

The notation Ck
0 (Ω) refers to the subspace of Ck(Ω) consisting of functions f for which

there is a compact set K ⊂ Ω such that f ≡ 0 outside of K; you can think of Ck
0 (Ω)

functions being those that vanish in a neighbourhood of the boundary.
In this course we will mostly concern ourselves with the case in which k is a nonnegative

integer. (Cα with non-integer alpha usually refers to a Hölder space. Hölder spaces play
an important role in the theory of inverse problems, but most of this theory lies beyond
the scope of this course.)

Note that the derivative operator gets along well with Ck spaces, as long as k is big
enough: a derivative operator Da of order a maps Ck(Ω) to Ck−a(Ω), provided that k ≥ a.

1.2. Lp Spaces. (|f |p is integrable)
The space Lp(Ω) is usually defined for 1 ≤ p < ∞ as the space of all measurable

functions f on Ω such that ∫
Ω

|f(x)|pdx <∞,

modulo the equivalence relation f ' g if f = g almost everywhere. It has the natural
norm

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
)1/p

.
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L∞(Ω) is more complicated (because of those weasel words “almost everywhere”) but we
can think of it as the set of all bounded measurable functions on Ω with the norm

‖f‖L∞(Ω) = inf
g=fa.e.

sup{|g(x)||x ∈ Ω}.

For almost all of this course we will concern ourselves only with the three best Lp spaces:
L1, L2, and L∞. It’s important to note that

• Ck(Ω) is dense in Lp(Ω) for any 1 ≤ p <∞ and nonnegative integer k.
• Since Lp(Ω) is also complete, we could think of Lp(Ω) as the completion of C∞(Ω)

in the Lp norm. That is, we can think of Lp(Ω) as the space of all functions which
are the limit (in the Lp norm sense) of a sequence of C∞(Ω) functions.
• L2(Ω) is a Hilbert space with inner product 〈f, g〉 =

∫
Ω
fg.

Note that the derivative operator does not get along well with Lp spaces: in general an
Lp function is not differentiable in the classical sense. For differentiation we need to pass
to the notion of...

1.3. Sobolev Spaces. (k weak derivatives are in Lp)
We want to define the Sobolev space W k,p to be the space of functions whose kth

derivatives are Lp. Unfortunately if we do this, then the resulting space is no longer
complete.

To fix this we define the weak derivative: w = ∂αxu in the weak sense if

(−1)|α|
∫

Ω

w∂αxϕ =

∫
Ω

uϕ

for every ϕ ∈ C∞0 (Ω). We can define the Sobolev space W k,p(Ω) as the space of all
functions in Lp for which all weak derivatives up to order k exist and are Lp. It has the
natural norm

‖f‖p
Wk,p(Ω)

=
∑
|α|≤k

‖∂αx f‖
p
Lp(Ω)

As with the Lp spaces, it turns out that Ck(Ω) is dense in W k,p(Ω) and so we can think
of W k,p(Ω) as the completion of Ck(Ω) under the W k,p(Ω) norm.

The W k,2 spaces are the best ones, and they are often written Hk, where H stands for
Hilbert space. They have a natural inner product which we will mostly ignore.

For our purposes one of the most striking facts about Sobolev spaces is that they have
a trace property: for example, if u ∈ Hk(Ω) for k ≥ 1, then u|∂Ω ∈ Hk−1(∂Ω). This is not
true for Lp functions – they’re only defined almost anywhere – but functions in sufficiently
good Sobolev spaces have enough regularity that the restriction to smaller-dimension sets
can make sense. (Here f ∈ Hk−1(∂Ω) should be interpreted as follows: if we take a section
of ∂Ω and represent it as a graph of a function g, then f ◦ g should be in Hk−1(Rn−1).

Actually u|∂Ω ∈ Hk− 1
2 (Ω), but to make sense of this statement we will have to read

more below.
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2. Tools

Most of this course uses three main tools, aside from the standard stuff one learns in
undergraduate multivariable calculus/ ODE courses.

Anything more complicated than this we’ll do in detail.

2.1. Integration by Parts. Ok, so people do learn about this one in undergraduate
courses, but usually no one talks about how critically important it is.

Typically we’ll use a multivariable version of integration by parts, since inverse problems
are not usually any fun in one dimension. The most important version is the divergence
(or Gauss’s) theorem: for a vector field V : Rn → Rn,∫

Ω

∇ · V dx =

∫
∂Ω

ν · V dS,

where ν is the (outward) unit normal vector on ∂Ω. This has two important consequences
for the Laplacian 4u = ∇ · ∇u:∫

Ω

u4vdx = −
∫

Ω

∇u · ∇vdx+

∫
∂Ω

u∂νvdS

and ∫
Ω

4uvdx−
∫

Ω

v4udx =

∫
∂Ω

v∂νudS −
∫
∂Ω

u∂νvdS.

These two statements are sometimes called Green’s first and second identities.
The divergence theorem also has an important consequence for the partial derivative

∂xi = ∇ · ei: ∫
Ω

∂xiuvdx = −
∫

Ω

u∂xivdx+

∫
∂Ω

νiuvdS,

where νi is the ith component of ν.

2.2. Fourier Transform. For f ∈ L1(Rn), we define

f̂(ξ) =

∫
Rn

f(x)e−ix·ξdx.

A priori the Fourier transform maps L1(Rn) to L∞(Rn), but it turns out that it can be
extended to a map from L2(Rn) to L2(Rn), with the Plancherel identity

‖f̂‖L2 = (2π)?‖f‖L2 .

We will mostly consider the Fourier transform as a map from L2 to L2. The Fourier
transform has an inverse transform

f̆(ξ) = (2π)?

∫
Rn

f(x)eix·ξdx.

The Fourier transform has a number of cute properties but for our purposes the most
important is the following:

∂̂αx f(ξ) = (iξ)αf̂(ξ).
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For linear equations, this can turn the problem of solving PDE into an algebraic problem!
For example, if we have

(1−4)u = f

then
(1 + |ξ|2)û = f̂

so

û =
1

1 + |ξ|2
f̂ .

The Fourier transform also has an important role in understanding Sobolev spaces. It
turns out that for nonnegative integer k,

‖u‖Hk(Rn) ' ‖(1 + |ξ|)kû‖L2(Rn).

This provides a convenient way of understanding Hk(Rn) for any k: just use the above
identity!

2.3. Neumann Series. Also called Born series, a Neumann series is an operator version
of the following Taylor series fact: for |x| < 1,

1

1− x
= 1 + x+ x2 + x3 + x4 + . . .

Suppose we have an operator K : X → X, such that there exists c < 1 so that

‖Ku‖X ≤ c‖u‖X .
It turns out that the operator I −K is invertible and

(I −K)−1 = I +K +K2 +K3 + . . .

This is easy to prove: the right side convergence because of the convergence of geometric
series, and if one applies (I −K) to the right side one recovers the identity!


