
1. February 19

Recall that last time we showed that

Corollary 1.1. Fix q ∈ L∞(Ω). There exists τ > 0 such that for all u ∈ C2
0(Ω),

τ‖u‖L2(Ω) . ‖(4±τ + q)u‖L2(Ω).

By a Hahn-Banach argument, we get the following result.

Corollary 1.2. Suppose f ∈ L2(Ω), q ∈ L∞(Ω). Then for sufficiently large τ there exists
u ∈ L2(Ω) such that

(4τ + q)u = f

and

‖u‖L2(Ω) . τ−1‖f‖L2(Ω).

This is what we need to prove the existence of CGOs.

1.1. CGO Solutions and the Inverse Problem.

Proposition 1.3. Suppose q ∈ L∞(Ω). Then for sufficiently large τ , there exists a solution
of the form

u = eτx1(eiτx2 + r)

to the equation

(4+ q)u = 0

with

‖r‖L2(Ω) ≤ τ−1‖q‖L∞(Ω)

Proof. By Corollary 1.2, there exists, for sufficiently large τ , a solution r to the equation

(4+ q)r = −qeiτx2

with

‖r‖L2(Ω) . τ−1‖q‖L2(Ω) . τ−1‖q‖L∞(Ω).

Now one can check that

u = eτx1(eiτx2 + r)

solves

(4+ q)u = 0

as desired. �

By changing coordinates, we could write this in a number of other ways – for instance,
we could write

u = eτx1(eiτ(ax2+bx3) + r)

as long as a2 + b2 = 1.
While we’re here, let’s finish the proof of identifiability in the inverse problem:

Theorem 1.4. Suppose q1, q2 ∈ L∞(Ω), and Λq1 = Λq2. Then q1 = q2.
1
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Proof. By the integration by parts argument from February 12, we know that if u1, u2

solve
(4+ q1)u1 = (4+ q2)u2 = 0

on Ω, then Λq1 = Λq2 implies that

(1.1)

∫
Ω

(q2 − q1)u1u2dx = 0.

Now by Proposition 1.3, we can take

u1 = eτx1(eiτ(ax2+bx3) + r1)

for sufficiently large τ , where a2 + b2 = 1. By changing coordinates, the same argument
also tells us we can take

u2 = e−τx1(eiτ(−ax2+bx3) + r2).

Plugging these into the integral identity (1.1) gives∫
Ω

(q2 − q1)eiτbx3(1 + r1 + r2 + r1r2)dx = 0.

Now set b = βτ−1, so ∫
Ω

(q2 − q1)eiβx3(1 + r1 + r2 + r1r2)dx = 0.

If we take τ →∞, we get ∫
Ω

(q2 − q1)eiβx3dx = 0.

We can do this for any choice of β and x3, which shows that the Fourier transform of
q2 − q1 is zero. This shows that q2 = q1, so we’re done.

�

1.2. Proof of the Carleman Estimate. Recall that our Carleman estimate was the
following.

Theorem 1.5. For all τ > 0 and u ∈ C2
0(Ω),

τ‖u‖L2(Ω) . ‖(4±τ + q)u‖L2(Ω).

Proof of Theorem 1.5. Suppose τ > 0 and u ∈ C2
0(Ω). The expression

‖4τu‖2
L2(Ω) = (4τu,4τu).

is practically crying out to be integrated by parts. Explicitly, we have

4τu = (4+ 2τ∂1 + τ 2)u.

Notice that the terms of 4τ will act very differently under integration by parts: 4 and τ 2

are self adjoint (not even any boundary terms, since u ∈ C2
0(Ω)), but 2τ∂1 is not.) Let’s

set
A = 4+ τ 2

and
B = 2τ∂1.
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Then

‖4τu‖2
L2(Ω) = ((A+B)u, (A+B)u)

= (Au,Au) + (Au,Bu) + (Bu,Au) + (Bu,Bu)

= ‖Au‖2
L2(Ω) + ((AB −BA)u, u) + ‖Bu‖2

L2(Ω)

The integration by parts leaves no boundary terms, since we assumed that u ∈ C2
0(Ω).

In general, proving a Carleman estimate now requires showing that the commutator is
positive or at least not too negative. But we have a simple estimate to prove and we have
the simplest possible commutator: AB −BA = 0. Therefore

‖4τu‖2
L2(Ω) = ‖Au‖2

L2(Ω) + ‖Bu‖2
L2(Ω).

A Poincaré inequality tells us that

‖Bu‖L2(Ω) = 2τ‖∂1u‖L2(Ω) & τ‖u‖L2(Ω),

so

‖4τu‖2
L2(Ω) & τ 2‖u‖2

L2(Ω),

and the result follows.
�

For completeness, we can prove the Poincaré inequality as well: if u ∈ C2
0(Ω), then u

has a C2 extension by zero to all of Rn, and

u(x) =

∫ x1

−∞
∂1u(t, x′)dt.

By Jensen’s inequality,

|u(x)| .
(∫ x1

−∞
|∂1u(t, x′)|2dt

) 1
2

.

Integrating, we get

‖u‖2
L2(Rn) .

∫
Rn−1

∫ C

−C

∫ x1

−∞
|∂1u(t, x′)|2 dt dx1 dx

′.

Here the integral in x1 is on a bounded interval because u is compactly supported. Fubini’s
Theorem tells us that

‖u‖2
L2(Rn) .

∫ C

−C

∫
Rn−1

∫ ∞
−∞
|∂1u(t, x′)|2 dt dx′ dx1.

In other words,

‖u‖2
L2(Rn) . 2C‖∂1u(t, x′)‖2

L2(Rn).
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1.3. A Direct Inverse. There are many ways to obtain a direct inverse. The slickest
is probably to use Fourier series in place of the Fourier transform. Let Q be the cube
[−π, π]n.

Theorem 1.6. There exists an operator 4−1
τ : L2(Q)→ L2(Q) such that

4τ4−1
τ f = f

for all f ∈ L2(Q), and

‖4−1
τ f‖ ≤ τ−1‖f‖L2(Q).

If Ω is bounded, we can stick it inside a cube; WLOG the sube is Q. Consider the
equation

4τu = (4+ 2τ∂1 + τ 2)u = f.

Instead of taking Fourier transforms, let’s instead expand both sides in Fourier series:

u =
∑

uNe
iN ·x.

Matching like terms, we get

(−|N |2 + 2iτN1 + τ 2)uN = fN .

We’re still stuck with the problem that we’re not allowed to divide by the coefficient of
uN to get uN in terms of fN . But that’s just because we chose the wrong basis.

Lemma 1.7. Fix H ∈ Rn, and suppose f ∈ L2(Q). Then f has a unique representation

f(x) =
∑
N∈Zn

fNe
i(N+H)·x

where the sum converges in the L2 sense, and

‖f‖2
L2(Q) =

∑
N∈Zn

|fN |2

Proof. Just take the Fourier series representation of f(x)e−iH·x instead! �

Note that when we expand F = ∂jf in terms of this Fourier series, we get

FN = i(Nj +Hj)fN .

Proof of Theorem 1.6. Consider the equation

4τu = (4+ 2τ∂1 + τ 2)u = f.

ChooseH = (1
2
, . . . , 1

2
) and expand both sides in the Fourier series given by (1.7). Matching

like terms gives us

(|N +H|2 + 2iτ(
1

2
+N1) + τ 2)uN = fN .

Note that

||N +H|2 + 2iτ(
1

2
+N1) + τ 2| ≥ τ
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for all N ∈ Zn. Therefore we can divide through by it, and write

(1.2) uN =
fN

(|N +H|2 + 2iτ(1
2

+N1) + τ 2)

with
|uN | ≤ τ−1fN .

We can use this equation to define the operator 4−1
τ : for

f(x) =
∑
N∈Zn

fNe
i(N+H)·x

4−1
τ f =

∑
N∈Zn

fNe
i(N+H)·x

(|N +H|2 + 2iτ(1
2

+N1) + τ 2)
.

Note that 4−1
τ is indeed a left and right inverse to 4τ and

‖4−1
τ f‖2

L2(Q) =
∑
N∈Zn

∣∣∣∣ fN
(|N +H|2 + 2iτ(1

2
+N1) + τ 2)

∣∣∣∣2
≤

∑
N∈Zn

τ−2|fN |2

= τ−2‖f‖2
L2(Q)

�

This trick has its limitations – it doesn’t work in unbounded domains and typically
interacts badly with boundary values, unless you happen to be on a cube. On the other
hand, in applications where you have compactly supported functions in a bounded domain,
this can be great. You can prove the Poincaré inequality very easily with this trick, for
instance.

It might be helpful to note that the Carleman estimate follows immediately from the
existence of an inverse.

To see this, suppose u ∈ C2
0(Ω). The existence of the inverse says that u = 4−1

τ v for
some v ∈ L2(Ω), with

‖u‖L2(Ω) ≤ τ−1‖v‖L2(Ω).

But u = 4−1
τ v implies that v = 4τu, so

‖u‖L2(Ω) ≤ τ−1‖4τu‖L2(Ω).

2. February 23

2.1. Reconstruction is hard. Theorem 1.4 is an identifiability result: it shows that the
map q 7→ Λq is one-to-one, but it doesn’t give a formula for reconstructing q from Λq.

How difficult is it to give such a formula?
Recall that on February 12 we proved the general integration by parts formula∫

Ω

(q2 − q1)u1u2 dx =

∫
∂Ω

u1[Λq1 − Λq2 ](u2) dS
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for uj solving (4+ qj)uj = 0.
If we’re just interested in recovering one q, we could write∫

Ω

quv dx =

∫
∂Ω

u[Λq − Λ0](v) dS

where (4+ q)u = 0 and 4v = 0. By using CGO solutions

u = eζ1·x(1 + r)

v = eζ2·x

we can arrange for

lim
τ→∞

∫
Ω

quv dx =

∫
Ω

qeiξ·x dx = q̂(ξ)

for any chosen ξ. Therefore

q̂(ξ) = lim
τ→∞

∫
∂Ω

u[Λq − Λ0](v) dS

for well chosen CGO solutions u and v. This looks like a reconstruction formula! There’s
only one problem: it’s not clear from our construction of the CGO that we know what
u|∂Ω is.

Everything else is known: Λq is known by hypothesis, Λ0 depends only on the domain
Ω, which is known, and v is just the harmonic function eζ2·x with ζ2 chosen by us. It’s
only u|∂Ω which is unknown. In fact it’s just r|∂Ω which is unknown.

One hope might be that r|∂Ω is small in the limit as τ →∞, but there are no guarantees
that this is the case. After all only the L2 norm of r is small, and this gives no guarantees
on the behaviour of r on a measure zero set.

So the problem of reconstruction is morally the problem of understanding the boundary
behaviour of the CGO solution u, or at least its remainder term r.

2.2. Finding u|∂Ω. Now r is given by an equation of the form

(4τ + q)r = qe−iτx2 on Ω.

or

(I +4−1
τ q)r = qe−iτx2 on Ω.

We need to find r|∂Ωm but this is difficult, because the whole point is that we are ignorant
of q.

On the other hand, when we defined 4−1
τ , we defined it on a bigger set than Ω: we

defined it on a cube Q which contains Ω.
In the original Sylvester-Uhlmann paper, they actually managed to find an inverse on

all of Rn, by using weighted L2 spaces.
Nachman realized that if you have such a thing, then you get a function r defined on

all of Rn, with

(4τ + q)r = qe−iτx2 on Rn.
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In particular
4τr = 0

on Ω′ = Rn \ Ω. Equivalently,
4eτx1r = 0 on Ω′.

Therefore eτx1r is a harmonic function on Ω′, and it’s at least plausible that since you
know the operator 4−1

τ , you understand the behaviour of r at infinity. So you have a
harmonic function on Ω′ whose behaviour at infinity is somewhat understood, and now
it’s plausible that you can find the boundary value of r! This is the key idea; a slightly
more precise sketch follows.

Out of personal laziness, I’ll express this in terms of

4ζ = e−ζ·x4eζ·x

instead of 4τ .
We’ll need a black box, which is the existence of the global 4−1

ζ .

Theorem 2.1. The operator 4ζ has an inverse 4−1
ζ : L2

δ(Rn)→ L2
δ−1(Rn) such that

‖4−1
ζ f‖L2

δ−1(Rn) . τ−1‖f‖L2
δ(Rn)

The heart of the reconstruction idea is the equivalence of four problems: an integral
equation, a global differential equation, an exterior differential equation, and a boundary
problem. I’ll present this in terms of u instead of r, following a paper of Mikko Salo.

Theorem 2.2. The following problems are equivalent:

• The integral equation

(2.1) u+ eζ·x4−1
ζ e−ζ·x(qu) = eζ·x on Rn.

• The global differential equation

(4− q)u = 0 on Rn

u = eζ·x(1 + r) with r ∈ 4−1
ζ L2

δ(Rn)

• The exterior differential equation

4u = in Ω′

u = ∈ H2(Ω′ ∩BR(0)) for any R > 0

∂νu = Λqu on ∂Ω

with the Sommerfeld radiation condition

lim
R→∞

∫
|y|=R

Gζ(x, y)∂νu(y)− u(y)∂ν(y)Gζ(x, y)dS(y) = eζ·x

for almost every x ∈ Rn, where Gζ is a Green’s function for the Laplacian defined
in terms of 4−1

ζ , and almost every x ∈ Rn.
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• The boundary integral equation

1

2
u+

∫
∂Ω

Gζ(x, y)∂νu(y)− u(y)∂ν(y)Gζ(x, y)dS(y) = eζ·x

on ∂Ω.

That the integral equation and the global differential equation are equivalent is really
just the fact that 4−1

ζ is a genuine inverse, up to some symbol-pushing.
Now if u solves the global differential equation, then it’s clear that it must be harmonic

on Ω′, since q is supported only in Ω. The regularity of u follows from basic facts about
harmonic functions, and the fact that u solves the global differential equation imposes
boundary values on u at ∂Ω and at infinity, which can be understood as the last two
conditions in the exterior problem.

For the remainder of the equivalences we have to be a little clearer about what Gζ is.
One can check that

eζ·x4−1
ζ e−ζ·x

is a right inverse for the regular Laplacian on Rn. But so is

f 7→
∫
Rn
G(x, y)f(y)dy,

where G(x, y) is the standard Green’s function for the Laplacian. One can check the
implication:

eζ·x4−1
ζ e−ζ·x

is of the form ∫
Rn
Gζ(x, y)f(y)dy

where Gζ is the regular Green’s function G(x, y) plus a harmonic function H(x, y).
Then an integration by parts in the Sommerfeld radiation condition can be used to

recover the integral equation.
Finally, an integration by parts on the exterior domain Ω′, with the Sommerfeld radia-

tion condition, gives the boundary problem.


