
1. February 26

1.1. Hybrid Problems. As we’ve seen above, tomography with elliptic equations is pos-
sible but difficult. This is a serious state of affairs because many forms of energy behave
according to elliptic equations.

Other tomographic methods exist (e.g. X-ray tomography, ultrasound) but they often
have drawbacks of their own. One of the most common drawbacks is that there may not
be sufficient contrast between objects we’re trying to identify. For example, if all non-bone
tissue in the body absorbs X-rays at about the same rate (this is only sort of true but
let’s pretend here), X-ray tomography will not be super helpful in diagnosing soft-tissue
problems.

Recently there has been some interest in using interactions between different types of
physical phenomena to improve the state of affairs with elliptic inverse problems. These
are sometimes called hybrid problems, because they act as a hybrid of two problems

We’re going to talk about two of these: photoacoustic (sometimes thermoacoustic)
tomography, and acousto-optic tomography.

1.2. Photoacoustic Tomography. The basic idea of photoacoustic tomography is as
follows. We illuminate an object Ω ⊂ R3 by some kind of radiation (usually microwaves –
at low amplitudes this is a very safe thing to do.)

The microwaves are absorbed into Ω at differing rates, which causes them to heat up
and expand. The expansion triggers a pressure wave through Ω, which can be measured
at the boundary. From the boundary measurements of the pressure wave, we want to
reconstruct the absorption coefficient.

Mathematically we can set up a simple version of the problem as follows.
Let u be the microwave intensity, and suppose u satisfies an elliptic equation like

4u− σu = 0 in Ω

with boundary condition u|∂Ω = g specified by us. Roughly speaking, this indicates that
u diffuses isotropically throughout the medium with absorption governed by σ. More
generally, we could replace the Laplacian with ∇ · γ∇, but let’s keep things simple for
now.

The expansion of the medium creates a pressure proportional to the amount of mi-
crowave radiation absorbed, which is to say that it’s proportional to σu. The proportion
is governed by something called the Grüneisen coefficient, so the initial pressure is given
by

f(x) = Γ(x)σ(x)u(x)

where Γ is the Grüneisen coefficient. Again, to keep things simple, let’s assume that the
Grüneisen coefficient is known.
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The pressure wave then propagates according to a wave equation

∂2
t p = 4p in R3 × [0,∞)

p(x, 0) = f(x)

∂tp(x, 0) = 0

Again the Laplacian should in general be replaced with some c(x)4, but we’ll keep things
simple for now. Note that the pressure distorts the medium slightly, but not on a scale
that we care about for reconstruction.

The measurement we take is p(x, t)|∂Ω×[0,∞). If you like you can think of this as a
boundary value map defined by σ, of the form Λσ : g 7→ p(x, t)|∂Ω×[0,∞). However, in this
simple version of the problem, we will see that it suffices to use one fixed g.

Then the inverse problem is to recover σ from knowledge of p(x, t)|∂Ω×[0,∞). Note that
since p(x, t) is measured on a three dimensional subset (two space dimensions and one
time dimension) there is substantially more information available here than there would
be for a purely elliptic problem.

1.3. Internal Functional. Recovery in a hybrid problem typically proceeds in two steps.
First, we use the extra boundary information to recover an internal functional: a function
defined on all of Ω, and not just the boundary. Then we use this internal functional to
recover the desired coefficient(s).

In photoacoustic tomography, this manifests itself in the following two step problem.

• First, we want to recover f(x) = Γ(x)σ(x)u(x), the initial condition for the pressure
wave, from the boundary data p(x, t)|∂Ω×[0,∞).
• Secondly, we want to recover σ from f .

Let’s do this in order. How can we recover f from p(x, t)|∂Ω×[0,∞)?
Recall that Huygen’s principle in R3 tells us that a solution to

∂2
t p = 4p in R3 × [0,∞)

p(x, 0) = f(x)

∂tp(x, 0) = 0

with f compactly supported inside Ω is eventually 0 inside a ball of radius R. In other
words there exists some finite time T such that

p(x, t) = 0 for all x ∈ Ω, t > T − 1.

Why is this is useful? It tells us that all of the information originally inside Ω has flowed
out through the boundary. We ought to be able to use the boundary information to
reconstruct the initial condition f , and in fact we can, because of a second nice property
of the wave equation: it’s time reversible!
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Consider the wave equation

∂2
t q = 4q in Ω× [0, T ]

q(x, 0) = 0

∂tq(x, 0) = 0

q(x, t)|∂Ω×[0,T ] = p(x, T − t)|∂Ω×[0,T ]

On the one hand, we can certainly recover the function q, since we know p(x, T−t)|∂Ω×[0,T ],
and we can solve wave equations.

On the other hand, one can check that q(x, t) = p(x, T − t) is a solution, by the
time reversibility of the wave equation, and by the uniqueness of solutions to the wave
equation, it must be the only solution. Therefore we can find p(x, t) for any t ∈ [0,∞),
and in particular, we have

f(x) = q(x, T ) = p(x, 0).

We can summarize:

Theorem 1.1. Suppose f(x) ∈ C(Ω) and

∂2
t p = 4p in R3 × [0,∞)

p(x, 0) = f(x)

∂tp(x, 0) = 0.

There exists T > 0 such that f(x) = q(x, T ), where q is the solution to

∂2
t q = 4q in Ω× [0, T ]

q(x, 0) = 0

∂tq(x, 0) = 0

q(x, t)|∂Ω×[0,T ] = p(x, T − t)|∂Ω×[0,T ].

2. February 28

2.1. Recovery of σ. Now we need to recover σ from f .
Recall that

f(x) = Γ(x)σ(x)u(x).

Assuming the Grüneiser coefficient Γ(x) is known and non-zero, we can divide through by
Γ to obtain

H(x) =
f(x)

Γ(x)
= σ(x)u(x).

Therefore the product H(x) = σ(x)u(x) is known. Now recall that

4u− σu = 0 in Ω
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and u|∂Ω = g. If σu is known, we need only solve a Poisson equation

4u = H

in Ω with u|∂Ω = g to recover u. If u > 0 then we can divide H through by u to recover σ.
How do we know that we can guarantee that u > 0? Suppose g is positive and u

is nonpositive somewhere inside Ω. It follows from continuity of u that u must have a
nonpositive local minimum inside Ω. Since u ≤ 0 at the nonpositive minimum, it follows
from the equation 4u − σu = 0 that u is superharmonic at the minimum, which is a
contradiction.

Note that the recovery of σ described above is a reconstruction: it gives us a procedure
to reconstruct σ from the boundary data p(x, t)|∂Ω×[0,∞)

2.2. Even more complicated. In theory we should be able to use the wealth of data
available from photoacoustics to reconstruct even more coefficients. As best as I can tell,
the following is not a proof of anything – there’s a hole in the theory that I’ll point out
below – but it can be used in practice.

Let’s consider a problem where the light intensity satisfies a more general equation

∇ · γ∇u− σu = 0 in Ω

with positive boundary condition u|∂Ω = g selected by us, and assume γ and σ are un-
known. As in the previous problem the microwave sets off a pressure wave p(x, t) which
propagates according to the wave equation

∂2
t p = 4p in R3 × [0,∞)

p(x, 0) = f(x)

∂tp(x, 0) = 0,

where

f(x) = Γ(x)σ(x)u(x),

with the Grüneiser coefficient Γ being known and nonzero. We want to recover γ and σ
from measurements of p(x, t)|∂Ω×[0,∞).

As before, for any given boundary microwave condition g, we can use p(x, t)|∂Ω×[0,∞) to
reconstruct the initial condition f(x) for the pressure wave, which in turn gives us

H(x) = σ(x)u(x).

Because we want to reconstruct two coefficients, let’s make measurements for two different
positive boundary conditions g1 and g2. Then we recover two internal functionals

H1(x) = σ(x)u1(x)

and

H2(x) = σ(x)u2(x)

where each uj solves ∇ · γ∇uj − σuj = 0 with the boundary condition uj = gj.
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Roughly speaking we have two equations in two unknowns (this is only very roughly
the case, since they’re differential equations) and we should be able to recombine them to
get something useful.

Multiply the equation for u1 by u2 and multiply the equation for u2 by u1. Subtracting
the resulting equations gives

u1∇ · γ∇u2 − u2∇ · γ∇u1 = 0.

Note that σ has been eliminated. Now we want to take advantage of the fact that the
quotient

u1

u2

=
H1

H2

is known. (Recall that if g2 is positive, division by u2 is legal.) Observe that

∇ ·
(
γu2

1∇
u2

u1

)
= ∇ ·

(
γu2

1

(
∇u2

u1

− u2

u1

∇u1

u1

))
= ∇ · (γu1∇u2 − γu2∇u1)

= u1∇ · γ∇u2 − u2∇ · γ∇u1.

(How did anyone discover this? I think this is where I’m supposed to provide insight but
I’ve got nothing. I came upon a similar looking problem with a coauthor once and we just
mashed the equations around on a board until we discovered something useful. If there’s
a better way no one told me what it was.) Therefore

∇ ·
(
γu2

1∇
u2

u1

)
= 0,

which means that

∇ ·
(
γu2

1∇
H2

H1

)
= 0.

The quantity H2/H1 is known, so we can read this as a transport equation for the unknown
quantity γu2

1. Assuming we can measure γu2
1 at the boundary, and H2/H1 has a decent

gradient field, we can recover γu2
1 inside Ω. This is a big assumption! As far as I know

there’s no theory that guarantees that the gradient field of H2/H1 allows one to solve the
transport equation throughout Ω. In practice, though, since H2/H1 is known, one would
be able to see exactly where the reconstruction fails if it fails, and even pick different
H2/H1 if necessary.

Does the quantity γu2
1 look familiar? It’s the square of the quantity v =

√
γu1, which is

the Liouville change of variables we made when we were looking at Calderón’s problem!
We have

4v + qv − σ

γ
v = 0

where

q = −
4√γ
√
γ
.
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Since v is known, it follows that

a = q − σ

γ
is known. Moreover

H1 = σu1 =
σ
√
γ
v

is known, so

b =
σ
√
γ

is known. Finally we can rewrite a in terms of b as

a = −
4√γ
√
γ
− b
√
γ
.

Viewing this as an equation in
√
γ, we get

−4√γ = a
√
γ + b.

Since a and b are known, and
√
γ on the boundary can be measured, we can reconstruct√

γ and use it in the equation for b to reconstruct σ also.


