
1. February 5

1.1. Independence of Angle. Most of this is based on a partially-buttocked reading
of the paper “Transport Equations for Elastic and Other Waves in Random Media” by
Leonid Ryzhik, George Papanicolaou, and Joseph Keller.

Let’s consider an RTE in two dimensions

(1.1) θ · ∇xu(x, θ) = −σ(x)u(x, θ) +

∫
Sn−1

k(x, θ, θ′)u(x, θ′) dθ′.

We’ll assume slightly stronger conditions in two respects than we normally do. First, let’s
suppose σ and k are positive and smooth.

Then we’ll suppose that k is very isotropic:

k(x, θ, θ′) = K(x, θ · θ′)
for some function K : X× [−1, 1]. This is another way of saying the strength of scattering
between θ and θ′ depends only on the angle between them.

On the other hand, we’ll assume that the dominance of absorption over scattering breaks
down:

(1.2)

∫
[k(x, θ, θ′)− σ(x)]dθ = 0.

Ok. Now let’s suppose ũ(x, θ) is a nonnegative solution to (1.1), let ε > 0 be small, and
let’s set

u(x, θ) = ũ(x/ε, θ).

Let’s think about this: u is like a zoomed out version of ũ: what happens on very large
scales with ũ happens at normal scales with u. This makes sense if we’re going to think
about diffusion: it’s a macro approximation of what’s happening at small scales.

So what does u do? Plugging into (1.1), we see that

(1.3) εθ · ∇xu(x, θ) = −σ(x)u(x, θ) +

∫
Sn−1

k(x, θ, θ′)u(x, θ′) dθ′.

Now let’s be physicists: we’ll assume that u takes the form

u(x, θ) = u0(x, θ) + εu1(x, θ) + ε2u2(x, θ) + . . .

Fix x. Substituting this expansion into (1.3), and matching like powers of ε, we see that

(1.4) −σ(x)u0(x, θ) +

∫
Sn−1

k(x, θ, θ′)u0(x, θ
′) dθ′ = 0.

For a fixed x, this is saying that u0(x, ·) is a non-negative eigenfunction for the operator

A2(u)(θ) =

∫
Sn−1

k(x, θ, θ′)u0(x, θ
′) dθ′.

This is a positive symmetric operator since k is positive, so the spirits of functional analysis
assure us that it has exactly one non-negative eigenfunction, and this must be u0(x, ·).
Moreover, this function must be independent of angle: if it weren’t, then u0(x, θ + θ0)
would also be a nonnegative eigenvalue by a change of variables.
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So the principal term in the expansion is independent of angle! This is what we have to
have to do a diffusion approximation: we have to be able to drop out the angular variable.
So far so good. Now we need to derive a governing equation for u0(x).

There are two ways to proceed:

1.2. Ryzhik-Papanicolaou-Keller. So let’s look at the O(ε) term:

(1.5) θ · ∇u0(x) =

∫
k(x, θ, θ′)u1(x, θ

′)dθ′ − σ(x)u1(x, θ).

We argue that θ · ∇u0 is also an eigenfunction for A2: if we pick coordinates such that
θ = x̂1, then ∫

k(x, θ, θ′)θ′ · ∇u0(x)dθ′ =

∫
K(x, θ′1)θ

′ · ∇u0(x)dθ′.

How in practice can you integrate over θ′ in two dimensions? One way is to parametrize
θ = (cos(t), sin(t)) and take t from 0 to 2π:∫

k(x, θ, θ′)θ′ · ∇u0(x)dθ′ =

∫ 2π

0

K(x, cos(t))(cos(t)∂1u0(x) + sin(t)∂2u0(x))dt

But now the second term of the integrand is odd so we get∫
k(x, θ, θ′)θ′ · ∇u0(x)dθ′ = A

∫ 1

−1
K(x, θ′1)θ

′
1∂1u0(x)dθ′1

for some constant A. Now the ∂1u0(x) lifts neatly out of the integral:∫
k(x, θ, θ′)θ′ · ∇u0(x)dθ′ = A

∫ 1

−1
K(x, θ′1)θ

′
1dθ
′
1∂1u0(x).

But ∂1u0(x) = θ · ∇u0(x) because of the way we chose coordinates, so∫
k(x, θ, θ′)θ′ · ∇u0(x)dθ′ = A

∫ 1

−1
K(x, θ′1)θ

′
1dθ
′
1θ · ∇u0(x).

This shows that θ · ∇u0 is an eigenfunction for A2. Then (1.5) says that

A2u1 − σu1 = v

where v is an eigenvector of A2. If you write u1 = av + bv′, you see that A2u1 = aλv +
bA2v

′ = v + aσv + bσv′, so v′ must be u0. Therefore

u1 = aθ · ∇u0(x) + bu0(x).

Note that by jamming the bu0 term back into the first term in the approximation, we may
as well write

u1(x, θ) = a(x)θ · ∇u0(x).

Sadly, substituting this back into (1.5) doesn’t yield anything useful; it just lets us calculate
a.

This isn’t yet a useful governing equation for u0, because there’s a u1 term in it. So
let’s move on and look at the O(ε2) term in the equation. We get

(1.6) θ · ∇u1 = A2u2 − σu2.
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We can sub in u1 = aθ · ∇u0 to get

θ · ∇[a(x)θ · ∇u0](x) = A2u2(x, θ)− σu2(x, θ).
The left side is beginning to look like a diffusion equation but the left side doesn’t have
anything in terms of u0. This is a pain, but there is a solution: we can integrate both
sides in θ. The condition (1.2) tells us that the left side vanishes when we do this, and
we’re left with ∫

Sn−1

θ · ∇[a(x)θ · ∇u0](x) dθ = 0.

Now let’s parametrize θ = (cos(t), sin(t)) like we did before, so we get∫ 2π

0

(cos2(t)∂1(a(x)∂1u0)+cos(t) sin(t)(∂1(a(x)∂2u0)+∂2(a(x)∂1u0))+sin2(t)∂2(a(x)∂2u0)) dt = 0.

The middle terms are odd in the t variable, so what’s left is∫ 2π

0

cos2(t)dt∂1(a(x)∂1u0) +

∫ 2π

0

sin2(t)dt∂2(a(x)∂2u0) = 0,

which is precisely
∇ · a∇u0 = 0.


