1. February 5

1.1. Independence of Angle. Most of this is based on a partially-buttocked reading of the paper "Transport Equations for Elastic and Other Waves in Random Media" by Leonid Ryzhik, George Papanicolaou, and Joseph Keller.

Let's consider an RTE in two dimensions

$$
\begin{equation*}
\theta \cdot \nabla_{x} u(x, \theta)=-\sigma(x) u(x, \theta)+\int_{S^{n-1}} k\left(x, \theta, \theta^{\prime}\right) u\left(x, \theta^{\prime}\right) d \theta^{\prime} \tag{1.1}
\end{equation*}
$$

We'll assume slightly stronger conditions in two respects than we normally do. First, let's suppose σ and k are positive and smooth.

Then we'll suppose that k is very isotropic:

$$
k\left(x, \theta, \theta^{\prime}\right)=K\left(x, \theta \cdot \theta^{\prime}\right)
$$

for some function $K: X \times[-1,1]$. This is another way of saying the strength of scattering between θ and θ^{\prime} depends only on the angle between them.

On the other hand, we'll assume that the dominance of absorption over scattering breaks down:

$$
\begin{equation*}
\int\left[k\left(x, \theta, \theta^{\prime}\right)-\sigma(x)\right] d \theta=0 \tag{1.2}
\end{equation*}
$$

Ok. Now let's suppose $\tilde{u}(x, \theta)$ is a nonnegative solution to (1.1), let $\varepsilon>0$ be small, and let's set

$$
u(x, \theta)=\tilde{u}(x / \varepsilon, \theta) .
$$

Let's think about this: u is like a zoomed out version of \tilde{u} : what happens on very large scales with \tilde{u} happens at normal scales with u. This makes sense if we're going to think about diffusion: it's a macro approximation of what's happening at small scales.

So what does u do? Plugging into (1.1), we see that

$$
\begin{equation*}
\varepsilon \theta \cdot \nabla_{x} u(x, \theta)=-\sigma(x) u(x, \theta)+\int_{S^{n-1}} k\left(x, \theta, \theta^{\prime}\right) u\left(x, \theta^{\prime}\right) d \theta^{\prime} . \tag{1.3}
\end{equation*}
$$

Now let's be physicists: we'll assume that u takes the form

$$
u(x, \theta)=u_{0}(x, \theta)+\varepsilon u_{1}(x, \theta)+\varepsilon^{2} u_{2}(x, \theta)+\ldots
$$

Fix x. Substituting this expansion into (1.3), and matching like powers of ε, we see that

$$
\begin{equation*}
-\sigma(x) u_{0}(x, \theta)+\int_{S^{n-1}} k\left(x, \theta, \theta^{\prime}\right) u_{0}\left(x, \theta^{\prime}\right) d \theta^{\prime}=0 \tag{1.4}
\end{equation*}
$$

For a fixed x, this is saying that $u_{0}(x, \cdot)$ is a non-negative eigenfunction for the operator

$$
A_{2}(u)(\theta)=\int_{S^{n-1}} k\left(x, \theta, \theta^{\prime}\right) u_{0}\left(x, \theta^{\prime}\right) d \theta^{\prime}
$$

This is a positive symmetric operator since k is positive, so the spirits of functional analysis assure us that it has exactly one non-negative eigenfunction, and this must be $u_{0}(x, \cdot)$. Moreover, this function must be independent of angle: if it weren't, then $u_{0}\left(x, \theta+\theta_{0}\right)$ would also be a nonnegative eigenvalue by a change of variables.

So the principal term in the expansion is independent of angle! This is what we have to have to do a diffusion approximation: we have to be able to drop out the angular variable. So far so good. Now we need to derive a governing equation for $u_{0}(x)$.

There are two ways to proceed:
1.2. Ryzhik-Papanicolaou-Keller. So let's look at the $O(\varepsilon)$ term:

$$
\begin{equation*}
\theta \cdot \nabla u_{0}(x)=\int k\left(x, \theta, \theta^{\prime}\right) u_{1}\left(x, \theta^{\prime}\right) d \theta^{\prime}-\sigma(x) u_{1}(x, \theta) \tag{1.5}
\end{equation*}
$$

We argue that $\theta \cdot \nabla u_{0}$ is also an eigenfunction for A_{2} : if we pick coordinates such that $\theta=\hat{x}_{1}$, then

$$
\int k\left(x, \theta, \theta^{\prime}\right) \theta^{\prime} \cdot \nabla u_{0}(x) d \theta^{\prime}=\int K\left(x, \theta_{1}^{\prime}\right) \theta^{\prime} \cdot \nabla u_{0}(x) d \theta^{\prime}
$$

How in practice can you integrate over θ^{\prime} in two dimensions? One way is to parametrize $\theta=(\cos (t), \sin (t))$ and take t from 0 to 2π :

$$
\int k\left(x, \theta, \theta^{\prime}\right) \theta^{\prime} \cdot \nabla u_{0}(x) d \theta^{\prime}=\int_{0}^{2 \pi} K(x, \cos (t))\left(\cos (t) \partial_{1} u_{0}(x)+\sin (t) \partial_{2} u_{0}(x)\right) d t
$$

But now the second term of the integrand is odd so we get

$$
\int k\left(x, \theta, \theta^{\prime}\right) \theta^{\prime} \cdot \nabla u_{0}(x) d \theta^{\prime}=A \int_{-1}^{1} K\left(x, \theta_{1}^{\prime}\right) \theta_{1}^{\prime} \partial_{1} u_{0}(x) d \theta_{1}^{\prime}
$$

for some constant A. Now the $\partial_{1} u_{0}(x)$ lifts neatly out of the integral:

$$
\int k\left(x, \theta, \theta^{\prime}\right) \theta^{\prime} \cdot \nabla u_{0}(x) d \theta^{\prime}=A \int_{-1}^{1} K\left(x, \theta_{1}^{\prime}\right) \theta_{1}^{\prime} d \theta_{1}^{\prime} \partial_{1} u_{0}(x) .
$$

But $\partial_{1} u_{0}(x)=\theta \cdot \nabla u_{0}(x)$ because of the way we chose coordinates, so

$$
\int k\left(x, \theta, \theta^{\prime}\right) \theta^{\prime} \cdot \nabla u_{0}(x) d \theta^{\prime}=A \int_{-1}^{1} K\left(x, \theta_{1}^{\prime}\right) \theta_{1}^{\prime} d \theta_{1}^{\prime} \theta \cdot \nabla u_{0}(x) .
$$

This shows that $\theta \cdot \nabla u_{0}$ is an eigenfunction for A_{2}. Then (1.5) says that

$$
A_{2} u_{1}-\sigma u_{1}=v
$$

where v is an eigenvector of A_{2}. If you write $u_{1}=a v+b v^{\prime}$, you see that $A_{2} u_{1}=a \lambda v+$ $b A_{2} v^{\prime}=v+a \sigma v+b \sigma v^{\prime}$, so v^{\prime} must be u_{0}. Therefore

$$
u_{1}=a \theta \cdot \nabla u_{0}(x)+b u_{0}(x) .
$$

Note that by jamming the $b u_{0}$ term back into the first term in the approximation, we may as well write

$$
u_{1}(x, \theta)=a(x) \theta \cdot \nabla u_{0}(x)
$$

Sadly, substituting this back into (1.5) doesn't yield anything useful; it just lets us calculate a.

This isn't yet a useful governing equation for u_{0}, because there's a u_{1} term in it. So let's move on and look at the $O\left(\varepsilon^{2}\right)$ term in the equation. We get

$$
\begin{equation*}
\theta \cdot \nabla u_{1}=A_{2} u_{2}-\sigma u_{2} . \tag{1.6}
\end{equation*}
$$

We can sub in $u_{1}=a \theta \cdot \nabla u_{0}$ to get

$$
\theta \cdot \nabla\left[a(x) \theta \cdot \nabla u_{0}\right](x)=A_{2} u_{2}(x, \theta)-\sigma u_{2}(x, \theta) .
$$

The left side is beginning to look like a diffusion equation but the left side doesn't have anything in terms of u_{0}. This is a pain, but there is a solution: we can integrate both sides in θ. The condition (1.2) tells us that the left side vanishes when we do this, and we're left with

$$
\int_{S^{n-1}} \theta \cdot \nabla\left[a(x) \theta \cdot \nabla u_{0}\right](x) d \theta=0 .
$$

Now let's parametrize $\theta=(\cos (t), \sin (t))$ like we did before, so we get

$$
\int_{0}^{2 \pi}\left(\cos ^{2}(t) \partial_{1}\left(a(x) \partial_{1} u_{0}\right)+\cos (t) \sin (t)\left(\partial_{1}\left(a(x) \partial_{2} u_{0}\right)+\partial_{2}\left(a(x) \partial_{1} u_{0}\right)\right)+\sin ^{2}(t) \partial_{2}\left(a(x) \partial_{2} u_{0}\right)\right) d t=0
$$

The middle terms are odd in the t variable, so what's left is

$$
\int_{0}^{2 \pi} \cos ^{2}(t) d t \partial_{1}\left(a(x) \partial_{1} u_{0}\right)+\int_{0}^{2 \pi} \sin ^{2}(t) d t \partial_{2}\left(a(x) \partial_{2} u_{0}\right)=0
$$

which is precisely

$$
\nabla \cdot a \nabla u_{0}=0
$$

