
1. March 19

1.1. Unique Continuation. The term “unique continuation”, like the term “inverse
problem”, is not super well defined and usually better illustrated by example than by a
vague definition.

That said, unique continuation has a number of well-defined terms associated to it. The
most well known are probably the following.

Definition 1.1. We say the equation Lu = 0 on Rn has the weak unique continuation
property if the condition

Lu = 0 and u ≡ 0 on an open set U

implies that u ≡ 0 on Rn.

Definition 1.2. We say the equation Lu = 0 on Rn has the strong unique continuation
property if the condition

Lu = 0 and there exists x0 ∈ Rn such that lim
x→x0

|x− x0|−mu(x) = 0

for all m ∈ N implies that u ≡ 0 on Rn.

Clearly the strong unique continuation property implies the weak unique continuation
property.

We can modify these statements in the appropriate way to discuss unique continuation
at infinity, too.

Note that the equation 4u = 0 has the strong unique continuation property, since any
harmonic function is analytic.

Roughly speaking, unique continuation results tell you that knowing about a solution
u in the neighbourhood of a point suffices to determine that solution globally. These are
interesting in their own right, but they are also technical tools that crop up in a number
of places, because they extend local information to global information.

As a cheap example, consider the following version of the standard Liouville theorem
from complex analysis:

Theorem 1.1. Suppose f is holomorphic and lim|z|→∞ f(z) = 0. Then f is the zero
function.

If you like you can think of this as a (very strong) unique continuation result for holo-
morphic functions at infinity. The Liouville theorem gives rise to a very nice proof of the
fundamental theorem of algebra.

Theorem 1.2. Suppose f(z) is a nonconstant polynomial. Then there exists a complex
number z0 such that f(z0) = 0.

Proof. you �

2. March 21

As an introduction to the subject, we’ll prove the following simple unique continuation
theorem at infinity.
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Theorem 2.1. Suppose v ∈ H2(Rn) and there exists a constant C such that

|4v(x)| ≤ C|v(x)|
for a.e. x ∈ Rn. There exists τ > 0 such that if

eτx
2

v ∈ H2(Rn)

Then v ≡ 0 on Rn.

This immediately implies the weak unique continuation property at infinity for the
Schrödinger equation 4+ q for L∞ functions q. On closer inspection it proves something
stronger than the weak unique continuation property, but not quite as strong as the strong
unique continuation property. In practice, many unique continuation arguments take this
form.

It’s worth noting that unique continuation results like the one above apply to nonlinear
equations as well. For example, if we have a solution to

4u = u2

that satisfies the inequality

|u(x)| ≤ e−x
2

1 + |x|n+1

for all x ∈ Rn, then the theorem above tells us that u ≡ 0.

2.1. Carleman Estimate. As a start, we will prove the following Carleman estimate.
For my convenience, let’s denote ϕ(x) = |x|2.

Theorem 2.2. Let τ > 0, and define

4ϕ = eτx
24e−τx2 .

There exists C, τ0 > 0 such that for all u ∈ H2(Rn) and τ > τ0

τ‖u‖H1(Rn) ≤ C‖4ϕu‖L2(Rn).

Proof. The proof is like the proof of our inverse problems Carleman estimate. Explicitly,

4ϕu = eτϕ4e−τϕu = (4− τ(∇ · ∇ϕ+∇ϕ · ∇) + τ 2|∇ϕ|2)u.
Like in the inverse problems estimate, we notice that this can be written in terms of a self
adjoint operator and an anti-self adjoint operator. If we define

A = 4+ τ 2|∇ϕ|2

and

B = −τ(∇ · ∇ϕ+∇ϕ · ∇)

then we have

4ϕ = A+B

where A is self adjoint and B is anti-self adjoint. We can write

‖4ϕu‖2 = ‖Au‖2 + ‖Bu‖2 + (Au,Bu) + (Bu,Au)
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and integrate by parts. We get

‖4ϕu‖2 = ‖Au‖2 + ‖Bu‖2 + ([A,B]u, u)

with no boundary terms, since u ∈ H2. In the inverse problems version of this estimate,
the commutator term was zero, and the ‖Bu‖ term gave us positivity because of Poincaré’s
inequality. Here, Poincaré alone cannot save us, because we are on an unbounded domain,
so we’d better hope we have a good commutator. Explicitly,

[A,B] = 4τ 3∇ϕ ·D2ϕ · ∇ϕ− 4τ 3∇ ·D2ϕ · ∇ − τ [4,4ϕ].

Our specific choice of ϕ is ϕ(x) = |x|2, so the last term is zero. Moreover

∇ϕ(x) = 2x

and

D2ϕ =

[
2 0
0 2

]
.

Therefore

[A,B] = 16τ 3|x|2 − 8τ4.
Therefore

([A,B]u, u) = 16τ 3‖xu‖2 + 8τ‖∇u‖2.
Then

‖4ϕu‖2 ≥ 16τ 3‖xu‖2 + 8τ‖∇u‖2.
Now our idea should be that the first term bounds u when x is large and the second term
bounds u when u is small. We can put this into practice by letting χ be a smooth radial
cutoff function which is identically 1 when |x| < 1 and identically 0 when |x| > 2. Then

8τ‖∇u‖2 = 7τ‖∇u‖2 + τ‖χ∇u+ (1− χ)∇u‖
≥ 7τ‖∇u‖2 + τ‖χ∇u‖ − τ‖(1− χ)∇u‖
≥ 6τ‖∇u‖2 + τ‖χ∇u‖
≥ 6τ‖∇u‖2 + τ‖∇(χu)‖ − τ‖(∇χ)u‖
≥ 6τ‖∇u‖2 + τ‖∇(χu)‖ − 2τ‖xu‖

Therefore

‖4ϕu‖2 ≥ 14τ 3‖xu‖2 + τ‖∇(χu)‖2 + 6τ‖∇u‖2.
Using a Poincaré inequality, we get

C‖4ϕu‖2 ≥ 14τ 3‖xu‖2 + 6τ‖∇u‖2 + τ‖χu‖2 ≥ τ‖u‖2H1 .

�

Now let’s prove the unique continuation result.
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Proof of Theorem ??. Suppose eτx
2
v ∈ H2(Rn). Let u = eτx

2
v. Then u ∈ H2(Rn), and by

Theorem ??,
τ‖u‖L2(Rn) . ‖4ϕu‖L2(Rn)

for all sufficiently large τ . Now if

|4v(x)| ≤ C|v(x)|
for a.e. x ∈ Rn, then

|4ϕu| ≤ C|u(x)|.
Therefore

τ‖u‖H1(Rn) . ‖u‖L2(Rn)

for all sufficiently large τ . But this is a contradiction unless u ≡ 0. �

This gives a toy example of a unique continuation result at infinity. Several inefficiencies
in the proof should jump out at you: for one thing, it’s not clear that ϕ(x) = |x|2 is the
optimal choice of Carleman weight.

For another thing, it should be evident to you that we can prove a unique continuation
result with

(4+W (x) · ∇)v(x) ≤ C|v(x)|
with bounded W .

However, in the interest of broad coverage, I think it’s time to move on.
What about unique continuation at a point? By translation, it suffices to consider what

happens at zero without loss of generality.

Theorem 2.3. Suppose that u ∈ H2(Rn) and

|4u(x)| ≤ C|u(x)|
for a.e. x ∈ Rn. There exists τ1 > 0 such that if

|u(x)| . e−
τ1
x2

in a neighbourhood of 0, then u ≡ 0.

Proof. The key idea is the behaviour of 4 under the Kelvin transform.

f ∗(x) =
1

|x|n−2
f

(
x

|x|2

)
One can check that

4u∗(x) =
1

|x|n+2
[4u]

(
x

|x|2

)
.

In other words, if
|4u(x)| ≤ C|u(x)|

then

|4u∗(x)| ≤ C

|x|n+2

∣∣∣∣u( x

|x|2

)∣∣∣∣ =
C

|x|4
|u∗(x)| .

Moreover if
|u(x)| . e−

τ1
x2
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in a neighbourhood of zero, then

|u∗(x)| . e−τ1x
2

in a neighbourhood of infinity, and hence on Rn. Therefore if u is bounded then u must
be L2, and by the first hypothesis in the theorem u must be H2. Then eτx

2
u ∈ H2(Rn)

for any τ < τ1, so for sufficiently large τ1, we have, by Theorem ??, that u ≡ 0. �

It’s actually not necessary to stipulate that |4u(x)| ≤ C|u(x)| hold in all of Rn; it suffices
if that happens in a neighbourhood of 0. If you believe that, here’s a neat application of
unique continuation.

Theorem 2.4. Suppose Ω is a bounded domain with smooth boundary, q ∈ L∞(Ω) and
u ∈ H2(Ω) solves

4u+ qu = 0

in Ω. Suppose moreover that Γ ⊂ ∂Ω is an open set with

u = ∂νu = 0 on Γ.

Then u ≡ 0 in Ω.

An immediate corollary is that any two solutions that are equal up to first order on an
open subset of the boundary must be equal.

Proof. Consider an extended domain Ω̃ such that Ω ⊂ Ω̃ and ∂Ω \ Γ ⊂ ∂Ω̃.
We can extend u to a function ũ on Ω̃ by the zero extension, and check that ũ ∈ H1(Ω̃)

is a weak solution to the equation 4ũ+ qũ = 0 on Ω̃.
By standard regularity theory, ũ must be H2(Ω), and satisfies the inequality

|4u(x)| ≤ C|u(x)|
for a.e. x ∈ Ω̃. Moreover ũ is identically zero in an open set in Ω̃, so the weak unique
continuation property says that ũ ≡ 0 on Ω̃, and hence u ≡ 0 on Ω.
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