
1. March 26

1.1. Control Theory. Like everything else, control theory is an ill-defined term, but
we’ll illustrate with an example.

Suppose Ω is a smooth bounded domain. Let ΩT = Ω × (0, 1), and consider the heat
equation

(∂t −4)u = 0 in ΩT

u(x, 0) = u0(x) on Ω.
(1.1)

The question is, given a target function u1(x) defined on Ω, are there boundary values
we can impose on ∂Ω×(0, 1), such that the solution to (1.1) has the property that u(x, 1) =
u1(x)?

In general the answer is no: because solutions to the heat equation are smooth, only
certain u1 are acceptable. A better way to phrase the question might be to first define a
space like

X = {v1 ∈ L2(Ω)|v1(x) = v(x, 1), where (∂t−4)v = 0 in Ω×(0, T ), v0(x) = v(x, 0) ∈ L2(Ω)}.

Then we can ask, for a given v1 ∈ X, is there f ∈ L2(∂Ω × (0, T )) such that the solution
to (1.1) with boundary condition u = g on ∂Ω × (0, T ) satisfies u(x, T ) = v1(x)?

Notice that if v1 ∈ X, then by definition there exists v0 ∈ L2(Ω) such that

(∂t −4)v = 0 in Ω× (0, 1)

v(x, 0) = v0(x) on Ω

and v(x, 1) = v1(x). Therefore if u solves (1.1) and u(x, 1) = v1(x) then

(∂t −4)(u− v) = 0 in Ω× (0, 1)

(u− v)(x, 0) = (u0 − v0)(x) on Ω

and u − v = 0 at t = 1. The converse is true as well, so to answer the question of
controllability, it suffices to understand the question of null-controllability.

1.2. Null-controllability. The basic question of null-controllability is the following: given
a function u0 on Ω, are there boundary conditions g ∈ L2(∂Ω× (0, 1)) such that the equa-
tion

(∂t −4)u = 0 in Ω× (0, 1)

u(x, 0) = u0(x) on Ω

u|∂Ω×(0,1) = g

(1.2)

has the property u(x, 1) ≡ 0? If so, we say that the initial condition u0 can be null
controlled. More generally, we want to know what space E of functions defined on Ω has
the property that each u0 ∈ E can be null controlled.

We say that a space E of functions on Ω can be null-controlled if there exists C > 0
such that for any u0 ∈ E, there exists g ∈ L2(∂Ω× (0, 1)) such that the solution u to the
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boundary value problem

(1.3)

 (∂t −4)u = 0
u(0, x) = u0(x)
u|∂Ω×(0,1) = g

satisfies the condition u(1, x) ≡ 0 and

(1.4) ‖g‖L2(∂Ω×(0,1)) ≤ C‖u0‖E.

The last inequality is key to ensuring that the boundary conditions can be picked contin-
uously, which is to say that the map from E to the necessary boundary condition is not
too badly behaved.

To understand how on earth anyone solves a problem like this, we need to introduce the
concept of the observability inequality.

1.3. Observability Inequality.

Theorem 1.1. The following statements are equivalent:

• The space L2(Ω) is null-controlled.
• For all v ∈ H2(ΩT ) which solve (∂t +4)v = 0 on ΩT with v ≡ 0 on ∂Ω× (0, 1),

(1.5) ‖v‖L2(Ω×{0}) . ‖∂νv‖L2(∂Ω×(0,1)).

Proof. First, suppose L2(Ω) is null-controlled, and suppose v ∈ H2(ΩT ) solves (∂t+4)v =
0 on ΩT with v ≡ 0 on ∂Ω× (0, 1). Now in particular v|t=0 is null-controlled, so we can set
w to be a solution to (∂t−4)w = 0 with initial condition w(0, x) = v(0, x), final condition
w(1, x) ≡ 0, and boundary condition w|∂Ω×(0,1) satisfying (1.4). Then

0 =

∫
ΩT

w(∂t +4)v dx

=

∫
ΩT

(−∂t +4)wv dx−
∫

Ω

w(0, x)v(0, x) dx−
∫
∂Ω×(0,1)

w∂νv dS

= −‖v‖2
L2(Ω×{0}) −

∫
∂Ω×(0,1)

w∂νv dS.

Therefore

‖v‖2
L2(Ω×{0}) ≤ C‖w‖L2(∂Ω×(0,1))‖∂νv‖L2(∂Ω×(0,1)).

By (1.4),

‖v‖L2(Ω×{0}) . ‖∂νv‖L2(∂Ω×(0,1)).

Therefore (1.5) holds for each v ∈ H2(ΩT ) which solves (∂t +4)v = 0 on ΩT with v = 0
on ∂Ω× (0, 1).

Now suppose (1.5) holds for each v ∈ H2(ΩT ) which solves (∂t +4)v = 0 on ΩT with
v = 0 on ∂Ω× (0, 1). Define

E = {f ∈ L2(∂Ω×(0, 1))|f = ∂νv for some v ∈ H2(ΩT ) s.t. (∂t+4)v = 0 and v|∂Ω×(0,1) = 0.}
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Let u0 ∈ L2(Ω). Define the linear functional ϕ : E → R by

ϕ(f) = −(u0, v|t=0)Ω.

Then (1.5) implies that

|ϕ(f)| ≤ ‖u0‖L2(Ω)‖v(0, x)‖L2(Ω) . ‖u0‖L2(Ω)‖f‖L2(∂Ω×(0,1)).

Therefore ϕ is bounded as a map from E ⊂ L2(∂Ω × (0, 1)) to R, and by Hahn-Banach,
it has an extension to the whole space L2(∂Ω× (0, 1)).

The extension is a linear functional on an L2 space, so by the Riesz representation
theorem, there exists g ∈ L2(∂Ω× (0, 1)) with

‖g‖L2(∂Ω×(0,1)) = ‖ϕ‖ . ‖u0‖L2(Ω)

and
ϕ(f) = (f, g)∂Ω×(0,1)

for all f ∈ L2(∂Ω× (0, 1)). Therefore

−(u0, v|t=0)Ω = (f, g)∂Ω×(0,1).

Now let u be the unique solution to Pu = 0 on ΩT with initial condition u(0, x) = u0(x)
and boundary conditions u|∂Ω×(0,1) = g. Then

−(u(0, x), v(0, x))Ω = (∂νv, u)∂Ω×(0,1).

Meanwhile, an integration by parts gives

0 = ((−∂t+4)u, v)ΩT
−(u, (∂t+4)v)ΩT

= (u(1, x), v(1, x))Ω−(u(0, x), v(0, x))Ω−(∂νv, u)∂Ω×(0,1).

Combining the above two equations gives

(u(1, x), v(1, x))Ω = 0.

This holds for any v solving the backwards heat equation (∂t +4)v = 0 on ΩT with v ≡ 0
on ∂Ω× (0, 1), but for any given C∞(Ω) function, we can solve the forwards heat equation
on ΩT and then time reverse the solution to obtain any smooth final condition for v that
we want. Therefore u(1, x) = 0, and it follows that L2(Ω) is null-controlled.

�

So the problem of control comes down to an inequality, like any other self-respecting
problem in analysis. On the other hand, this inequality does not look very much like any
Carleman inequality we’ve seen so far.

In fact, trying to prove a Carleman inequality for the (adjoint) heat equation, we might
end up with the following, very different looking result.

Theorem 1.2. Suppose without loss of generality that Ω does not contain 0 and is con-
tained in the ball of radius R around 0. Let

ϕ(x, t) =
x2 −R2

t(1− t)
.

Let
P ∗ϕ = eτϕ(∂t +4)e−τph.
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Then for all u ∈ H2(ΩT ) with u ≡ 0 on ∂ΩT ,

τ‖u‖L2(ΩT ) . ‖
√
|∂νϕ|∂νu‖L2(∂Ω×(0,1)) + ‖P ∗ϕu‖L2(ΩT ).

This has an extra boundary term on the right side, compared to the Carleman estimates
we’re used to. But this isn’t so strange – if we’re not assuming that v vanishes to first order
on the boundary, we should expect to pick up a boundary term from the integration by
parts that we usually use to prove Carleman estimates. What’s the relationship between
the Carleman estimate and the observability inequality? I claim the Carleman estimate
in fact proves the observability inequality, and hence controllability. Let’s see why.

First, we have to make the standard substitution v = e−τϕu, so we get

τ‖eτϕv‖L2(ΩT ) . ‖
√
|∂νϕ|eτϕ∂νv‖L2(∂Ω×(0,1)) + ‖eτϕ(∂t +4)v‖L2(ΩT )

for all v such that eτϕv ∈ H2(ΩT ) with v ≡ 0 on ∂Ω × (0, 1). Now eτϕ and
√
|∂νϕ|eτϕis

bounded above on ΩT , so in fact

‖eτϕv‖L2(ΩT ) . ‖∂νv‖L2(∂Ω×(0,1)) + ‖(∂t +4)v‖L2(ΩT )

for all v ∈ H2(ΩT ) with v ≡ 0 on ∂Ω× (0, 1). (Note that we don’t have to specify that v
is zero on the time boundaries t = 0 or t = 1, because of the form of ϕ and the fact that
v = e−τϕu. Sadly eτϕ is not bounded below on ΩT . (why not?) But it is bounded below
on Ω× (1/3, 2/3), so

‖v‖L2(Ω×(1/3,2/3)) . ‖∂νv‖L2(∂Ω×(0,1)) + ‖(∂t +4)v‖L2(ΩT ).

Now what? In the observability inequality, we make the crucial assumption that (∂t +
4)v = 0. If we apply this, we get

‖v‖L2(Ω×(1/3,2/3)) . ‖∂νv‖L2(∂Ω×(0,1))

for all v ∈ H2(ΩT ) with v ≡ 0 on ∂Ω × (0, 1) and (∂t + 4)v = 0. This is almost the
observability inequality! We only have the wrong lower bound. But a simple energy
argument fixes this: if (∂t +4)v = 0, then

∂t‖v(x, t)‖2
L2(Ω) = 2

∫
Ω

v(x, t)∂tv(x, t) dx

= −2

∫
Ω

v(x, t)4v(x, t) dx

= 2‖∇v(x, t)‖2
L2(Ω).

Therefore ‖v(x, t)‖2
L2(Ω) is an increasing function of t, and

‖v‖L2(Ω×{0}) . ‖v‖L2(Ω×(1/3,2/3)).

Therefore
‖v‖L2(Ω×{0}) . ‖∂νv‖L2(∂Ω×(0,1))

for all v ∈ H2(ΩT ) with v ≡ 0 on ∂Ω × (0, 1) and (∂t + 4)v = 0. This proves the
observability inequality, and hence the following theorem
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Theorem 1.3. Let Ω be a smooth bounded domain. Then the space L2(Ω) is null-controlled
for the heat equation.

It only remains to prove the Carleman inequality.

Proof of the Carleman inequality. As usual, we begin by writing out in full

P ∗ϕ = ∂t + τ∂tϕ+4− τ(∇ · ∇ϕ+∇ϕ · ∇) + τ 2|∇ϕ|2.
We write this in terms of symmetric and antisymmetric parts:

P ∗ϕ = A+B

where
A = 4+ τ 2|∇ϕ|2 + τ∂tϕ

and
B = ∂t − τ(∇ · ∇ϕ+∇ϕ · ∇),

and we get

‖P ∗ϕv‖2
L2(ΩT ) = ‖Au‖+ ‖Bu‖+ ([A,B]u, u) + boundary terms.

Because of the fact that u is zero on the boundary, only one boundary term in fact remains:
it’s the boundary term that you get from integrating by parts in the term

(2τ∇ϕ · ∇u,4u)ΩT
= 2τ(∇ϕ · ∇u, ∂νu)∂Ω×(0,1) + (42τ∇ϕ · ∇u, u)ΩT

The tangential part of ∇ϕ · ∇u is also irrelevant, because of the fact that u vanishes on
the boundary, so in fact what we’re left with is the boundary term

2τ(∂νϕ∂νu, ∂νu)∂Ω×(0,1).

This is bounded above by
Cτ‖∂νu‖2

L2(∂Ω×(0,1)).

The commutator is bounded below as before (there are some extra terms, but disposing of
them is merely an exercise in tedium). This finishes the proof of the Carleman estimate.
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