1. March 26

1.1. Control Theory. Like everything else, control theory is an ill-defined term, but we'll illustrate with an example.

Suppose Ω is a smooth bounded domain. Let $\Omega_{T}=\Omega \times(0,1)$, and consider the heat equation

$$
\begin{align*}
\left(\partial_{t}-\triangle\right) u & =0 \text { in } \Omega_{T} \\
u(x, 0) & =u_{0}(x) \text { on } \Omega . \tag{1.1}
\end{align*}
$$

The question is, given a target function $u_{1}(x)$ defined on Ω, are there boundary values we can impose on $\partial_{\Omega} \times(0,1)$, such that the solution to (1.1) has the property that $u(x, 1)=$ $u_{1}(x)$?

In general the answer is no: because solutions to the heat equation are smooth, only certain u_{1} are acceptable. A better way to phrase the question might be to first define a space like
$X=\left\{v_{1} \in L^{2}(\Omega) \mid v_{1}(x)=v(x, 1)\right.$, where $\left(\partial_{t}-\triangle\right) v=0$ in $\left.\Omega \times(0, T), v_{0}(x)=v(x, 0) \in L^{2}(\Omega)\right\}$.
Then we can ask, for a given $v_{1} \in X$, is there $f \in L^{2}\left(\partial_{\Omega} \times(0, T)\right)$ such that the solution to (1.1) with boundary condition $u=g$ on $\partial_{\Omega} \times(0, T)$ satisfies $u(x, T)=v_{1}(x)$?

Notice that if $v_{1} \in X$, then by definition there exists $v_{0} \in L^{2}(\Omega)$ such that

$$
\begin{aligned}
\left(\partial_{t}-\triangle\right) v & =0 \text { in } \Omega \times(0,1) \\
v(x, 0) & =v_{0}(x) \text { on } \Omega
\end{aligned}
$$

and $v(x, 1)=v_{1}(x)$. Therefore if u solves (1.1) and $u(x, 1)=v_{1}(x)$ then

$$
\begin{aligned}
\left(\partial_{t}-\triangle\right)(u-v) & =0 \text { in } \Omega \times(0,1) \\
(u-v)(x, 0) & =\left(u_{0}-v_{0}\right)(x) \text { on } \Omega
\end{aligned}
$$

and $u-v=0$ at $t=1$. The converse is true as well, so to answer the question of controllability, it suffices to understand the question of null-controllability.
1.2. Null-controllability. The basic question of null-controllability is the following: given a function u_{0} on Ω, are there boundary conditions $g \in L^{2}(\partial \Omega \times(0,1))$ such that the equation

$$
\begin{align*}
\left(\partial_{t}-\triangle\right) u & =0 \text { in } \Omega \times(0,1) \\
u(x, 0) & =u_{0}(x) \text { on } \Omega \tag{1.2}\\
\left.u\right|_{\partial \Omega \times(0,1)}=g &
\end{align*}
$$

has the property $u(x, 1) \equiv 0$? If so, we say that the initial condition u_{0} can be null controlled. More generally, we want to know what space E of functions defined on Ω has the property that each $u_{0} \in E$ can be null controlled.

We say that a space E of functions on Ω can be null-controlled if there exists $C>0$ such that for any $u_{0} \in E$, there exists $g \in L^{2}(\partial \Omega \times(0,1))$ such that the solution u to the
boundary value problem

$$
\begin{cases}\left(\partial_{t}-\triangle\right) u & =0 \tag{1.3}\\ u(0, x) & =u_{0}(x) \\ \left.u\right|_{\partial \Omega \times(0,1)} & =g\end{cases}
$$

satisfies the condition $u(1, x) \equiv 0$ and

$$
\begin{equation*}
\|g\|_{L^{2}(\partial \Omega \times(0,1))} \leq C\left\|u_{0}\right\|_{E} . \tag{1.4}
\end{equation*}
$$

The last inequality is key to ensuring that the boundary conditions can be picked continuously, which is to say that the map from E to the necessary boundary condition is not too badly behaved.

To understand how on earth anyone solves a problem like this, we need to introduce the concept of the observability inequality.

1.3. Observability Inequality.

Theorem 1.1. The following statements are equivalent:

- The space $L^{2}(\Omega)$ is null-controlled.
- For all $v \in H^{2}\left(\Omega_{T}\right)$ which solve $\left(\partial_{t}+\triangle\right) v=0$ on Ω_{T} with $v \equiv 0$ on $\partial \Omega \times(0,1)$,

$$
\begin{equation*}
\|v\|_{L^{2}(\Omega \times\{0\})} \lesssim\left\|\partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))} . \tag{1.5}
\end{equation*}
$$

Proof. First, suppose $L^{2}(\Omega)$ is null-controlled, and suppose $v \in H^{2}\left(\Omega_{T}\right)$ solves $\left(\partial_{t}+\triangle\right) v=$ 0 on Ω_{T} with $v \equiv 0$ on $\partial \Omega \times(0,1)$. Now in particular $\left.v\right|_{t=0}$ is null-controlled, so we can set w to be a solution to $\left(\partial_{t}-\triangle\right) w=0$ with initial condition $w(0, x)=v(0, x)$, final condition $w(1, x) \equiv 0$, and boundary condition $\left.w\right|_{\partial \Omega \times(0,1)}$ satisfying (1.4). Then

$$
\begin{aligned}
0 & =\int_{\Omega_{T}} w\left(\partial_{t}+\triangle\right) v d x \\
& =\int_{\Omega_{T}}\left(-\partial_{t}+\triangle\right) w v d x-\int_{\Omega} w(0, x) v(0, x) d x-\int_{\partial \Omega \times(0,1)} w \partial_{\nu} v d S \\
& =-\|v\|_{L^{2}(\Omega \times\{0\})}^{2}-\int_{\partial \Omega \times(0,1)} w \partial_{\nu} v d S .
\end{aligned}
$$

Therefore

$$
\|v\|_{L^{2}(\Omega \times\{0\})}^{2} \leq C\|w\|_{L^{2}(\partial \Omega \times(0,1))}\left\|\partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))}
$$

By (1.4),

$$
\|v\|_{L^{2}(\Omega \times\{0\})} \lesssim\left\|\partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))} .
$$

Therefore (1.5) holds for each $v \in H^{2}\left(\Omega_{T}\right)$ which solves $\left(\partial_{t}+\triangle\right) v=0$ on Ω_{T} with $v=0$ on $\partial \Omega \times(0,1)$.

Now suppose (1.5) holds for each $v \in H^{2}\left(\Omega_{T}\right)$ which solves $\left(\partial_{t}+\triangle\right) v=0$ on Ω_{T} with $v=0$ on $\partial \Omega \times(0,1)$. Define $E=\left\{f \in L^{2}(\partial \Omega \times(0,1)) \mid f=\partial_{\nu} v\right.$ for some $v \in H^{2}\left(\Omega_{T}\right)$ s.t. $\left(\partial_{t}+\triangle\right) v=0$ and $\left.\left.v\right|_{\partial \Omega \times(0,1)}=0.\right\}$

Let $u_{0} \in L^{2}(\Omega)$. Define the linear functional $\varphi: E \rightarrow \mathbb{R}$ by

$$
\varphi(f)=-\left(u_{0},\left.v\right|_{t=0}\right)_{\Omega}
$$

Then (1.5) implies that

$$
|\varphi(f)| \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}\|v(0, x)\|_{L^{2}(\Omega)} \lesssim\left\|u_{0}\right\|_{L^{2}(\Omega)}\|f\|_{L^{2}(\partial \Omega \times(0,1))} .
$$

Therefore φ is bounded as a map from $E \subset L^{2}(\partial \Omega \times(0,1))$ to \mathbb{R}, and by Hahn-Banach, it has an extension to the whole space $L^{2}(\partial \Omega \times(0,1))$.

The extension is a linear functional on an L^{2} space, so by the Riesz representation theorem, there exists $g \in L^{2}(\partial \Omega \times(0,1))$ with

$$
\|g\|_{L^{2}(\partial \Omega \times(0,1))}=\|\varphi\| \lesssim\left\|u_{0}\right\|_{L^{2}(\Omega)}
$$

and

$$
\varphi(f)=(f, g)_{\partial \Omega \times(0,1)}
$$

for all $f \in L^{2}(\partial \Omega \times(0,1))$. Therefore

$$
-\left(u_{0},\left.v\right|_{t=0}\right)_{\Omega}=(f, g)_{\partial \Omega \times(0,1)} .
$$

Now let u be the unique solution to $P u=0$ on Ω_{T} with initial condition $u(0, x)=u_{0}(x)$ and boundary conditions $\left.u\right|_{\partial \Omega \times(0,1)}=g$. Then

$$
-(u(0, x), v(0, x))_{\Omega}=\left(\partial_{\nu} v, u\right)_{\partial \Omega \times(0,1)} .
$$

Meanwhile, an integration by parts gives
$0=\left(\left(-\partial_{t}+\triangle\right) u, v\right)_{\Omega_{T}}-\left(u,\left(\partial_{t}+\triangle\right) v\right)_{\Omega_{T}}=(u(1, x), v(1, x))_{\Omega}-(u(0, x), v(0, x))_{\Omega}-\left(\partial_{\nu} v, u\right)_{\partial \Omega \times(0,1)}$.
Combining the above two equations gives

$$
(u(1, x), v(1, x))_{\Omega}=0 .
$$

This holds for any v solving the backwards heat equation $\left(\partial_{t}+\triangle\right) v=0$ on Ω_{T} with $v \equiv 0$ on $\partial \Omega \times(0,1)$, but for any given $C^{\infty}(\Omega)$ function, we can solve the forwards heat equation on Ω_{T} and then time reverse the solution to obtain any smooth final condition for v that we want. Therefore $u(1, x)=0$, and it follows that $L^{2}(\Omega)$ is null-controlled.

So the problem of control comes down to an inequality, like any other self-respecting problem in analysis. On the other hand, this inequality does not look very much like any Carleman inequality we've seen so far.

In fact, trying to prove a Carleman inequality for the (adjoint) heat equation, we might end up with the following, very different looking result.

Theorem 1.2. Suppose without loss of generality that Ω does not contain 0 and is contained in the ball of radius R around 0 . Let

$$
\varphi(x, t)=\frac{x^{2}-R^{2}}{t(1-t)}
$$

Let

$$
P_{\varphi}^{*}=e^{\tau \varphi}\left(\partial_{t}+\triangle\right) e^{-\tau p h}
$$

Then for all $u \in H^{2}\left(\Omega_{T}\right)$ with $u \equiv 0$ on $\partial \Omega_{T}$,

$$
\tau\|u\|_{L^{2}\left(\Omega_{T}\right)} \lesssim\left\|\sqrt{\left|\partial_{\nu} \varphi\right|} \partial_{\nu} u\right\|_{L^{2}(\partial \Omega \times(0,1))}+\left\|P_{\varphi}^{*} u\right\|_{L^{2}\left(\Omega_{T}\right)} .
$$

This has an extra boundary term on the right side, compared to the Carleman estimates we're used to. But this isn't so strange - if we're not assuming that v vanishes to first order on the boundary, we should expect to pick up a boundary term from the integration by parts that we usually use to prove Carleman estimates. What's the relationship between the Carleman estimate and the observability inequality? I claim the Carleman estimate in fact proves the observability inequality, and hence controllability. Let's see why.

First, we have to make the standard substitution $v=e^{-\tau \varphi} u$, so we get

$$
\tau\left\|e^{\tau \varphi} v\right\|_{L^{2}\left(\Omega_{T}\right)} \lesssim\left\|\sqrt{\left|\partial_{\nu} \varphi\right|} e^{\tau \varphi} \partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))}+\left\|e^{\tau \varphi}\left(\partial_{t}+\triangle\right) v\right\|_{L^{2}\left(\Omega_{T}\right)}
$$

for all v such that $e^{\tau \varphi} v \in H^{2}\left(\Omega_{T}\right)$ with $v \equiv 0$ on $\partial \Omega \times(0,1)$. Now $e^{\tau \varphi}$ and $\sqrt{\left|\partial_{\nu} \varphi\right|} e^{\tau \varphi}$ is bounded above on Ω_{T}, so in fact

$$
\left\|e^{\tau \varphi} v\right\|_{L^{2}\left(\Omega_{T}\right)} \lesssim\left\|\partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))}+\left\|\left(\partial_{t}+\triangle\right) v\right\|_{L^{2}\left(\Omega_{T}\right)}
$$

for all $v \in H^{2}\left(\Omega_{T}\right)$ with $v \equiv 0$ on $\partial \Omega \times(0,1)$. (Note that we don't have to specify that v is zero on the time boundaries $t=0$ or $t=1$, because of the form of φ and the fact that $v=e^{-\tau \varphi} u$. Sadly $e^{\tau \varphi}$ is not bounded below on Ω_{T}. (why not?) But it is bounded below on $\Omega \times(1 / 3,2 / 3)$, so

$$
\|v\|_{L^{2}(\Omega \times(1 / 3,2 / 3))} \lesssim\left\|\partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))}+\left\|\left(\partial_{t}+\triangle\right) v\right\|_{L^{2}\left(\Omega_{T}\right)} .
$$

Now what? In the observability inequality, we make the crucial assumption that $\left(\partial_{t}+\right.$ $\triangle) v=0$. If we apply this, we get

$$
\|v\|_{L^{2}(\Omega \times(1 / 3,2 / 3))} \lesssim\left\|\partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))}
$$

for all $v \in H^{2}\left(\Omega_{T}\right)$ with $v \equiv 0$ on $\partial \Omega \times(0,1)$ and $\left(\partial_{t}+\triangle\right) v=0$. This is almost the observability inequality! We only have the wrong lower bound. But a simple energy argument fixes this: if $\left(\partial_{t}+\triangle\right) v=0$, then

$$
\begin{aligned}
\partial_{t}\|v(x, t)\|_{L^{2}(\Omega)}^{2} & =2 \int_{\Omega} v(x, t) \partial_{t} v(x, t) d x \\
& =-2 \int_{\Omega} v(x, t) \triangle v(x, t) d x \\
& =2\|\nabla v(x, t)\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Therefore $\|v(x, t)\|_{L^{2}(\Omega)}^{2}$ is an increasing function of t, and

$$
\|v\|_{L^{2}(\Omega \times\{0\})} \lesssim\|v\|_{L^{2}(\Omega \times(1 / 3,2 / 3))} .
$$

Therefore

$$
\|v\|_{L^{2}(\Omega \times\{0\})} \lesssim\left\|\partial_{\nu} v\right\|_{L^{2}(\partial \Omega \times(0,1))}
$$

for all $v \in H^{2}\left(\Omega_{T}\right)$ with $v \equiv 0$ on $\partial \Omega \times(0,1)$ and $\left(\partial_{t}+\triangle\right) v=0$. This proves the observability inequality, and hence the following theorem

Theorem 1.3. Let Ω be a smooth bounded domain. Then the space $L^{2}(\Omega)$ is null-controlled for the heat equation.

It only remains to prove the Carleman inequality.
Proof of the Carleman inequality. As usual, we begin by writing out in full

$$
P_{\varphi}^{*}=\partial_{t}+\tau \partial_{t} \varphi+\triangle-\tau(\nabla \cdot \nabla \varphi+\nabla \varphi \cdot \nabla)+\tau^{2}|\nabla \varphi|^{2} .
$$

We write this in terms of symmetric and antisymmetric parts:

$$
P_{\varphi}^{*}=A+B
$$

where

$$
A=\triangle+\tau^{2}|\nabla \varphi|^{2}+\tau \partial_{t} \varphi
$$

and

$$
B=\partial_{t}-\tau(\nabla \cdot \nabla \varphi+\nabla \varphi \cdot \nabla)
$$

and we get

$$
\left\|P_{\varphi}^{*} v\right\|_{L^{2}\left(\Omega_{T}\right)}^{2}=\|A u\|+\|B u\|+([A, B] u, u)+\text { boundary terms. }
$$

Because of the fact that u is zero on the boundary, only one boundary term in fact remains: it's the boundary term that you get from integrating by parts in the term

$$
(2 \tau \nabla \varphi \cdot \nabla u, \triangle u)_{\Omega_{T}}=2 \tau\left(\nabla \varphi \cdot \nabla u, \partial_{\nu} u\right)_{\partial \Omega \times(0,1)}+(\triangle 2 \tau \nabla \varphi \cdot \nabla u, u)_{\Omega_{T}}
$$

The tangential part of $\nabla \varphi \cdot \nabla u$ is also irrelevant, because of the fact that u vanishes on the boundary, so in fact what we're left with is the boundary term

$$
2 \tau\left(\partial_{\nu} \varphi \partial_{\nu} u, \partial_{\nu} u\right)_{\partial \Omega \times(0,1)} .
$$

This is bounded above by

$$
C \tau\left\|\partial_{\nu} u\right\|_{L^{2}(\partial \Omega \times(0,1))}^{2} .
$$

The commutator is bounded below as before (there are some extra terms, but disposing of them is merely an exercise in tedium). This finishes the proof of the Carleman estimate.

