1. MARCH 26

1.1. Control Theory. Like everything else, control theory is an ill-defined term, but we'll illustrate with an example.

Suppose Ω is a smooth bounded domain. Let $\Omega_T = \Omega \times (0, 1)$, and consider the heat equation

(1.1)
$$\begin{aligned} (\partial_t - \Delta)u &= 0 \text{ in } \Omega_T \\ u(x, 0) &= u_0(x) \text{ on } \Omega. \end{aligned}$$

The question is, given a target function $u_1(x)$ defined on Ω , are there boundary values we can impose on $\partial_{\Omega} \times (0, 1)$, such that the solution to (1.1) has the property that $u(x, 1) = u_1(x)$?

In general the answer is no: because solutions to the heat equation are smooth, only certain u_1 are acceptable. A better way to phrase the question might be to first define a space like

$$X = \{ v_1 \in L^2(\Omega) | v_1(x) = v(x, 1), \text{ where } (\partial_t - \Delta)v = 0 \text{ in } \Omega \times (0, T), v_0(x) = v(x, 0) \in L^2(\Omega) \}.$$

Then we can ask, for a given $v_1 \in X$, is there $f \in L^2(\partial_\Omega \times (0,T))$ such that the solution to (1.1) with boundary condition u = g on $\partial_\Omega \times (0,T)$ satisfies $u(x,T) = v_1(x)$?

Notice that if $v_1 \in X$, then by definition there exists $v_0 \in L^2(\Omega)$ such that

$$(\partial_t - \Delta)v = 0 \text{ in } \Omega \times (0, 1)$$

 $v(x, 0) = v_0(x) \text{ on } \Omega$

and $v(x, 1) = v_1(x)$. Therefore if u solves (1.1) and $u(x, 1) = v_1(x)$ then

$$(\partial_t - \Delta)(u - v) = 0 \text{ in } \Omega \times (0, 1)$$
$$(u - v)(x, 0) = (u_0 - v_0)(x) \text{ on } \Omega$$

and u - v = 0 at t = 1. The converse is true as well, so to answer the question of controllability, it suffices to understand the question of null-controllability.

1.2. Null-controllability. The basic question of null-controllability is the following: given a function u_0 on Ω , are there boundary conditions $g \in L^2(\partial\Omega \times (0,1))$ such that the equation

(1.2)
$$(\partial_t - \Delta)u = 0 \text{ in } \Omega \times (0, 1)$$
$$u(x, 0) = u_0(x) \text{ on } \Omega$$
$$u|_{\partial\Omega \times (0, 1)} = g$$

has the property $u(x, 1) \equiv 0$? If so, we say that the initial condition u_0 can be null controlled. More generally, we want to know what space E of functions defined on Ω has the property that each $u_0 \in E$ can be null controlled.

We say that a space E of functions on Ω can be null-controlled if there exists C > 0such that for any $u_0 \in E$, there exists $g \in L^2(\partial \Omega \times (0, 1))$ such that the solution u to the boundary value problem

(1.3)
$$\begin{cases} (\partial_t - \Delta)u &= 0\\ u(0, x) &= u_0(x)\\ u|_{\partial\Omega \times (0, 1)} &= g \end{cases}$$

satisfies the condition $u(1, x) \equiv 0$ and

(1.4)
$$\|g\|_{L^2(\partial\Omega\times(0,1))} \le C\|u_0\|_{E^1}$$

The last inequality is key to ensuring that the boundary conditions can be picked continuously, which is to say that the map from E to the necessary boundary condition is not too badly behaved.

To understand how on earth anyone solves a problem like this, we need to introduce the concept of the observability inequality.

1.3. Observability Inequality.

Theorem 1.1. The following statements are equivalent:

- The space $L^2(\Omega)$ is null-controlled.
- For all $v \in H^2(\Omega_T)$ which solve $(\partial_t + \Delta)v = 0$ on Ω_T with $v \equiv 0$ on $\partial\Omega \times (0, 1)$,

(1.5)
$$\|v\|_{L^2(\Omega \times \{0\})} \lesssim \|\partial_{\nu}v\|_{L^2(\partial\Omega \times (0,1))}.$$

Proof. First, suppose $L^2(\Omega)$ is null-controlled, and suppose $v \in H^2(\Omega_T)$ solves $(\partial_t + \Delta)v = 0$ on Ω_T with $v \equiv 0$ on $\partial\Omega \times (0, 1)$. Now in particular $v|_{t=0}$ is null-controlled, so we can set w to be a solution to $(\partial_t - \Delta)w = 0$ with initial condition w(0, x) = v(0, x), final condition $w(1, x) \equiv 0$, and boundary condition $w|_{\partial\Omega \times (0, 1)}$ satisfying (1.4). Then

$$0 = \int_{\Omega_T} w(\partial_t + \Delta) v \, dx$$

=
$$\int_{\Omega_T} (-\partial_t + \Delta) wv \, dx - \int_{\Omega} w(0, x) v(0, x) \, dx - \int_{\partial\Omega \times (0, 1)} w \partial_\nu v \, dS$$

=
$$- \|v\|_{L^2(\Omega \times \{0\})}^2 - \int_{\partial\Omega \times (0, 1)} w \partial_\nu v \, dS.$$

Therefore

$$\|v\|_{L^{2}(\Omega\times\{0\})}^{2} \leq C\|w\|_{L^{2}(\partial\Omega\times(0,1))}\|\partial_{\nu}v\|_{L^{2}(\partial\Omega\times(0,1))}$$

By (1.4),

$$\|v\|_{L^2(\Omega\times\{0\})} \lesssim \|\partial_{\nu}v\|_{L^2(\partial\Omega\times(0,1))}.$$

Therefore (1.5) holds for each $v \in H^2(\Omega_T)$ which solves $(\partial_t + \Delta)v = 0$ on Ω_T with v = 0 on $\partial \Omega \times (0, 1)$.

Now suppose (1.5) holds for each $v \in H^2(\Omega_T)$ which solves $(\partial_t + \Delta)v = 0$ on Ω_T with v = 0 on $\partial\Omega \times (0, 1)$. Define

$$E = \{ f \in L^2(\partial \Omega \times (0,1)) | f = \partial_{\nu} v \text{ for some } v \in H^2(\Omega_T) \text{ s.t. } (\partial_t + \Delta)v = 0 \text{ and } v|_{\partial \Omega \times (0,1)} = 0. \}$$

Let $u_0 \in L^2(\Omega)$. Define the linear functional $\varphi: E \to \mathbb{R}$ by

$$\varphi(f) = -(u_0, v|_{t=0})_{\Omega}$$

Then (1.5) implies that

$$|\varphi(f)| \le ||u_0||_{L^2(\Omega)} ||v(0,x)||_{L^2(\Omega)} \lesssim ||u_0||_{L^2(\Omega)} ||f||_{L^2(\partial\Omega \times (0,1))}$$

Therefore φ is bounded as a map from $E \subset L^2(\partial \Omega \times (0,1))$ to \mathbb{R} , and by Hahn-Banach, it has an extension to the whole space $L^2(\partial \Omega \times (0,1))$.

The extension is a linear functional on an L^2 space, so by the Riesz representation theorem, there exists $g \in L^2(\partial\Omega \times (0,1))$ with

$$\|g\|_{L^2(\partial\Omega\times(0,1))} = \|\varphi\| \lesssim \|u_0\|_{L^2(\Omega)}$$

and

$$\varphi(f) = (f, g)_{\partial \Omega \times (0, 1)}$$

for all $f \in L^2(\partial \Omega \times (0,1))$. Therefore

$$-(u_0, v|_{t=0})_{\Omega} = (f, g)_{\partial\Omega \times (0,1)}.$$

Now let u be the unique solution to Pu = 0 on Ω_T with initial condition $u(0, x) = u_0(x)$ and boundary conditions $u|_{\partial\Omega\times(0,1)} = g$. Then

$$-(u(0,x),v(0,x))_{\Omega} = (\partial_{\nu}v,u)_{\partial\Omega\times(0,1)}.$$

Meanwhile, an integration by parts gives

$$0 = ((-\partial_t + \Delta)u, v)_{\Omega_T} - (u, (\partial_t + \Delta)v)_{\Omega_T} = (u(1, x), v(1, x))_{\Omega} - (u(0, x), v(0, x))_{\Omega} - (\partial_\nu v, u)_{\partial\Omega \times (0, 1)} - (\partial_\mu v, u)_{\partial\Omega \times (0, 1)}$$

Combining the above two equations gives

$$(u(1,x), v(1,x))_{\Omega} = 0.$$

This holds for any v solving the backwards heat equation $(\partial_t + \Delta)v = 0$ on Ω_T with $v \equiv 0$ on $\partial\Omega \times (0, 1)$, but for any given $C^{\infty}(\Omega)$ function, we can solve the forwards heat equation on Ω_T and then time reverse the solution to obtain any smooth final condition for v that we want. Therefore u(1, x) = 0, and it follows that $L^2(\Omega)$ is null-controlled.

So the problem of control comes down to an inequality, like any other self-respecting problem in analysis. On the other hand, this inequality does not look very much like any Carleman inequality we've seen so far.

In fact, trying to prove a Carleman inequality for the (adjoint) heat equation, we might end up with the following, very different looking result.

Theorem 1.2. Suppose without loss of generality that Ω does not contain 0 and is contained in the ball of radius R around 0. Let

$$\varphi(x,t) = \frac{x^2 - R^2}{t(1-t)}.$$

Let

$$P_{\varphi}^* = e^{\tau\varphi} (\partial_t + \Delta) e^{-\tau ph}.$$

Then for all $u \in H^2(\Omega_T)$ with $u \equiv 0$ on $\partial \Omega_T$,

$$\tau \|u\|_{L^2(\Omega_T)} \lesssim \|\sqrt{|\partial_\nu \varphi|} \partial_\nu u\|_{L^2(\partial\Omega \times (0,1))} + \|P_\varphi^* u\|_{L^2(\Omega_T)}.$$

This has an extra boundary term on the right side, compared to the Carleman estimates we're used to. But this isn't so strange – if we're not assuming that v vanishes to first order on the boundary, we should expect to pick up a boundary term from the integration by parts that we usually use to prove Carleman estimates. What's the relationship between the Carleman estimate and the observability inequality? I claim the Carleman estimate in fact proves the observability inequality, and hence controllability. Let's see why.

First, we have to make the standard substitution $v = e^{-\tau \varphi} u$, so we get

$$\tau \| e^{\tau \varphi} v \|_{L^2(\Omega_T)} \lesssim \| \sqrt{|\partial_\nu \varphi|} e^{\tau \varphi} \partial_\nu v \|_{L^2(\partial\Omega \times (0,1))} + \| e^{\tau \varphi} (\partial_t + \Delta) v \|_{L^2(\Omega_T)}$$

for all v such that $e^{\tau\varphi}v \in H^2(\Omega_T)$ with $v \equiv 0$ on $\partial\Omega \times (0,1)$. Now $e^{\tau\varphi}$ and $\sqrt{|\partial_{\nu}\varphi|}e^{\tau\varphi}$ is bounded above on Ω_T , so in fact

$$\|e^{\tau\varphi}v\|_{L^2(\Omega_T)} \lesssim \|\partial_{\nu}v\|_{L^2(\partial\Omega\times(0,1))} + \|(\partial_t + \Delta)v\|_{L^2(\Omega_T)}$$

for all $v \in H^2(\Omega_T)$ with $v \equiv 0$ on $\partial\Omega \times (0, 1)$. (Note that we don't have to specify that v is zero on the time boundaries t = 0 or t = 1, because of the form of φ and the fact that $v = e^{-\tau\varphi}u$. Sadly $e^{\tau\varphi}$ is not bounded below on Ω_T . (why not?) But it is bounded below on $\Omega \times (1/3, 2/3)$, so

$$\|v\|_{L^{2}(\Omega\times(1/3,2/3))} \lesssim \|\partial_{\nu}v\|_{L^{2}(\partial\Omega\times(0,1))} + \|(\partial_{t}+\Delta)v\|_{L^{2}(\Omega_{T})}.$$

Now what? In the observability inequality, we make the crucial assumption that $(\partial_t + \Delta)v = 0$. If we apply this, we get

$$\|v\|_{L^2(\Omega \times (1/3, 2/3))} \lesssim \|\partial_{\nu} v\|_{L^2(\partial \Omega \times (0, 1))}$$

for all $v \in H^2(\Omega_T)$ with $v \equiv 0$ on $\partial\Omega \times (0,1)$ and $(\partial_t + \Delta)v = 0$. This is almost the observability inequality! We only have the wrong lower bound. But a simple energy argument fixes this: if $(\partial_t + \Delta)v = 0$, then

$$\partial_t \|v(x,t)\|_{L^2(\Omega)}^2 = 2 \int_{\Omega} v(x,t) \partial_t v(x,t) dx$$
$$= -2 \int_{\Omega} v(x,t) \Delta v(x,t) dx$$
$$= 2 \|\nabla v(x,t)\|_{L^2(\Omega)}^2.$$

Therefore $||v(x,t)||^2_{L^2(\Omega)}$ is an increasing function of t, and

$$||v||_{L^2(\Omega \times \{0\})} \lesssim ||v||_{L^2(\Omega \times (1/3, 2/3))}$$

Therefore

$$\|v\|_{L^2(\Omega\times\{0\})} \lesssim \|\partial_{\nu}v\|_{L^2(\partial\Omega\times(0,1))}$$

for all $v \in H^2(\Omega_T)$ with $v \equiv 0$ on $\partial \Omega \times (0,1)$ and $(\partial_t + \Delta)v = 0$. This proves the observability inequality, and hence the following theorem

Theorem 1.3. Let Ω be a smooth bounded domain. Then the space $L^2(\Omega)$ is null-controlled for the heat equation.

It only remains to prove the Carleman inequality.

Proof of the Carleman inequality. As usual, we begin by writing out in full

$$P_{\varphi}^{*} = \partial_{t} + \tau \partial_{t} \varphi + \triangle - \tau (\nabla \cdot \nabla \varphi + \nabla \varphi \cdot \nabla) + \tau^{2} |\nabla \varphi|^{2}.$$

We write this in terms of symmetric and antisymmetric parts:

$$P^*_{\omega} = A + B$$

where

$$A = \triangle + \tau^2 |\nabla \varphi|^2 + \tau \partial_t \varphi$$

and

$$B = \partial_t - \tau (\nabla \cdot \nabla \varphi + \nabla \varphi \cdot \nabla)_t$$

and we get

$$||P_{\varphi}^*v||_{L^2(\Omega_T)}^2 = ||Au|| + ||Bu|| + ([A, B]u, u) + \text{ boundary terms.}$$

Because of the fact that u is zero on the boundary, only one boundary term in fact remains: it's the boundary term that you get from integrating by parts in the term

$$(2\tau\nabla\varphi\cdot\nabla u, \triangle u)_{\Omega_T} = 2\tau(\nabla\varphi\cdot\nabla u, \partial_\nu u)_{\partial\Omega\times(0,1)} + (\triangle 2\tau\nabla\varphi\cdot\nabla u, u)_{\Omega_T}$$

The tangential part of $\nabla \varphi \cdot \nabla u$ is also irrelevant, because of the fact that u vanishes on the boundary, so in fact what we're left with is the boundary term

$$2\tau(\partial_{\nu}\varphi\partial_{\nu}u,\partial_{\nu}u)_{\partial\Omega\times(0,1)}.$$

This is bounded above by

$$C\tau \|\partial_{\nu} u\|_{L^2(\partial\Omega\times(0,1))}^2.$$

The commutator is bounded below as before (there are some extra terms, but disposing of them is merely an exercise in tedium). This finishes the proof of the Carleman estimate.