1. MARCH 26

1.1. Control Theory. Like everything else, control theory is an ill-defined term, but
we’'ll illustrate with an example.

Suppose €2 is a smooth bounded domain. Let 7 = € x (0,1), and consider the heat
equation

(at —A)U: 0 in QT

(1.1) u(z,0) = up(x) on .

The question is, given a target function u;(z) defined on €2, are there boundary values
we can impose on dg X (0, 1), such that the solution to (1.1) has the property that u(z,1) =
uy(z)?

In general the answer is no: because solutions to the heat equation are smooth, only
certain u; are acceptable. A better way to phrase the question might be to first define a
space like

X ={v € L*(Q)|vi(z) = v(w,1), where (9,—A)v = 01in Qx(0,7T),v(z) = v(x,0) € L*(Q)}.

Then we can ask, for a given v; € X, is there f € L*(0g x (0,T)) such that the solution
to (1.1) with boundary condition u = g on dq x (0,T) satisfies u(z,T) = vy (z)?
Notice that if v; € X, then by definition there exists vy € L?(Q2) such that
(O —A)p=0in Q x (0,1)
v(x,0) = vo(z) on
and v(x,1) = v1(z). Therefore if u solves (1.1) and u(z, 1) = vy(x) then
(0, — A)(u—v)=01in Q x (0,1)
(u—v)(z,0) = (ug — vo)(z) on £

and u —v = 0 at t = 1. The converse is true as well, so to answer the question of
controllability, it suffices to understand the question of null-controllability.

1.2. Null-controllability. The basic question of null-controllability is the following: given
a function ug on 2, are there boundary conditions g € L?(9€ x (0,1)) such that the equa-
tion
(O — AN)u=01in Q x (0,1)
(1.2) u(z,0) = ug(x) on Q
u|6Q><(0,1) =9

has the property u(z,1) = 07 If so, we say that the initial condition ug can be null
controlled. More generally, we want to know what space E of functions defined on €2 has
the property that each ug € £ can be null controlled.

We say that a space E of functions on €2 can be null-controlled if there exists C' > 0

such that for any ug € E, there exists g € L?(9Q x (0, 1)) such that the solution u to the
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boundary value problem

(1.3) u(0, z) = ugp(x)
u|8§2><(0,1) =g

satisfies the condition u(1,x) =0 and

(1.4) 9]l L2 @0x0,1)) < Clluol|z-

The last inequality is key to ensuring that the boundary conditions can be picked contin-
uously, which is to say that the map from F to the necessary boundary condition is not
too badly behaved.

To understand how on earth anyone solves a problem like this, we need to introduce the
concept of the observability inequality.

1.3. Observability Inequality.

Theorem 1.1. The following statements are equivalent:

o The space L*(Y) is null-controlled.

e For allv € H*(Qr) which solve (0 + A)v =0 on Qr with v =0 on 9 x (0,1),
(1.5) [l z2x 0y S 11000l L200%(0,1))-

Proof. First, suppose L?(§2) is null-controlled, and suppose v € H?(27) solves (s + A)v =
0 on Q7 with v = 0 on 99 x (0,1). Now in particular v~y is null-controlled, so we can set
w to be a solution to (0; — A)w = 0 with initial condition w(0, z) = v(0, z), final condition
w(1,z) =0, and boundary condition w|snx (1) satisfying (1.4). Then

0 = / w(0; + AN)vde
Qr
= / (—@—l—A)wvdaz—/w(O,x)U(O,x) da:—/ wo,vdS
Qr Q

80 (0,1)
= —|v|j3. —/ wo,vdS.
LAEton) 80 (0,1)

Therefore
||U”%2(Q><{0}) < Cllwl| z20x 0,1 1000 L2 (00 (0,1)) -
By (1.4),
HUHL2(Qx{0}) S HaVUHL2(8Q><(O,1))~

Therefore (1.5) holds for each v € H?(Qr) which solves (9; + A)v = 0 on Qp with v = 0
on 092 x (0,1).

Now suppose (1.5) holds for each v € H?(27) which solves (9; + A)v = 0 on Qp with
v =0on 092 x (0,1). Define

E ={f € L*(092x(0,1))| f = d,v for some v € H*(Qr) s.t. (d+A)v =0 and v|sax(o,1) = 0.}



Let ug € L*(Q). Define the linear functional ¢ : E — R by

w(f) = —(uo, vli=0)o-
Then (1.5) implies that

|90(f)| < ||U0||L2(Q)||U(0>I)||L2(Q) N ||u0||L2(Q)||f||L2(8Q><(0,1))-

Therefore ¢ is bounded as a map from E C L*(9f2 x (0,1)) to R, and by Hahn-Banach,
it has an extension to the whole space L*(09 x (0, 1)).

The extension is a linear functional on an L? space, so by the Riesz representation
theorem, there exists g € L*(9Q x (0,1)) with

9]l L200x01)) = @l S lluoll 2@
and

o(f) = (f, 9)aax(o,1)
for all f € L*(0Q x (0,1)). Therefore

—(u0, v|t=0)a = (f, 9)aax.1)-

Now let u be the unique solution to Pu = 0 on Q7 with initial condition «(0,x) = ug(x)
and boundary conditions u|sax(,1) = g. Then

—(u(0,2),v(0,2))a = (0uv, 1) sax(0,1)-
Meanwhile, an integration by parts gives
0= ((=0+AD)u,v)o,—(u, (O +A)v)a, = (u(l,z),v(1, x))o—(u(0,z),v(0,x))a—(0,v, u)aax(0,1)-
Combining the above two equations gives
(u(1,z),v(1,2))q = 0.

This holds for any v solving the backwards heat equation (9; + A)v = 0 on Qp with v =0
on 982 x (0,1), but for any given C*°(£2) function, we can solve the forwards heat equation
on (27 and then time reverse the solution to obtain any smooth final condition for v that
we want. Therefore u(1,z) = 0, and it follows that L?*(€2) is null-controlled.

O

So the problem of control comes down to an inequality, like any other self-respecting
problem in analysis. On the other hand, this inequality does not look very much like any
Carleman inequality we’ve seen so far.

In fact, trying to prove a Carleman inequality for the (adjoint) heat equation, we might
end up with the following, very different looking result.

Theorem 1.2. Suppose without loss of generality that 2 does not contain 0 and is con-
tained in the ball of radius R around 0. Let

1‘2 _ R2
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Let

P =e"(0; + A)e P
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Then for all u € H*(Q7) with u =0 on 07,
Tllullzr) < 1V 10up10uull L2 00x0,1)) + [1Ppull 2 (r)-

This has an extra boundary term on the right side, compared to the Carleman estimates
we're used to. But this isn’t so strange — if we're not assuming that v vanishes to first order
on the boundary, we should expect to pick up a boundary term from the integration by
parts that we usually use to prove Carleman estimates. What’s the relationship between
the Carleman estimate and the observability inequality? I claim the Carleman estimate
in fact proves the observability inequality, and hence controllability. Let’s see why.

First, we have to make the standard substitution v = e™"%u, so we get

Tlle™ ]| L2y S 1V 10uple™ 00| L2 00x (0.1)) + [[€77(0 + D)ol L2y
for all v such that e™?v € H?(7) with v = 0 on 9Q x (0,1). Now €™ and /|9, ple"?is
bounded above on 27, so in fact
le™ vl L2 S 100l 200x0,1)) + (0 + A)vll 2@
for all v € H*(Qr) with v =0 on 9Q x (0,1). (Note that we don’t have to specify that v
is zero on the time boundaries ¢ = 0 or ¢ = 1, because of the form of ¢ and the fact that
v = e "Pu. Sadly €7 is not bounded below on Q7. (why not?) But it is bounded below
on 2 x (1/3,2/3), so
vll2@x1/3,2/3) S 1000l L2@0x0,1)) + 10 + D)ol L2(p)-
Now what? In the observability inequality, we make the crucial assumption that (9; +
A)v = 0. If we apply this, we get
[vllz2@xays2/3) S 1000 L200%(0,1)

for all v € H?*(Qr) with v = 0 on 9Q x (0,1) and (9; + A)v = 0. This is almost the
observability inequality! We only have the wrong lower bound. But a simple energy
argument fixes this: if (0; + A)v = 0, then

Oulo(, O)]2s0y = 2 / ola, ) (x, 1) d
Q

= —2/v(x,t)Av(x,t)dx
Q
= 2[|Vu(z,1)l[720).

Therefore ||v(z,t)]|3. () 18 an increasing function of ¢, and

||U||L2(Q><{0}) N ||U||L2(Qx(1/3,2/3))-
Therefore
vl z2@x o) S 1000200 (0,1))

for all v € H*(Qr) with v = 0 on 92 x (0,1) and (9, + A)v = 0. This proves the
observability inequality, and hence the following theorem
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Theorem 1.3. Let Q be a smooth bounded domain. Then the space L*(S2) is null-controlled
for the heat equation.

It only remains to prove the Carleman inequality.
Proof of the Carleman inequality. As usual, we begin by writing out in full
P =08, +70p+ A —7(V-Vo+ Ve V) + 7Vl

We write this in terms of symmetric and antisymmetric parts:

P,=A+B
where
A=A+713Ve]?+ 10,0
and
B=0,—7(V-Vo+Vp-V),
and we get

||P;v||%2(QT) = ||Aul|| + || Bul|| + ([A, BJu,u) + boundary terms.
Because of the fact that u is zero on the boundary, only one boundary term in fact remains:
it’s the boundary term that you get from integrating by parts in the term
27V - Vu, Au)o, = 27(Ve - Vu, 0,u)s0x0,1) + (A27Ve - Vu,u)q,
The tangential part of Vy - Vu is also irrelevant, because of the fact that u vanishes on
the boundary, so in fact what we’re left with is the boundary term
27(0, 00, u, 0,1) 90 (0,1)-
This is bounded above by
CTHaVuH%Q(BQX(O,l))'

The commutator is bounded below as before (there are some extra terms, but disposing of

them is merely an exercise in tedium). This finishes the proof of the Carleman estimate.
O



