Algebra Prelim

January 2006

1. Prove that the symmetric group S_{5} is generated by the two elements (12) and (12345).
2. Let G be a group with $|G|=200$. Show that G has a normal Sylow 5 -subgroup which is abelian.
3. Let R be a ring (with identity) such that $a^{2}=a$ for all $a \in R$. Prove that R is commutative.
4. Let \mathbf{Q} be the field of rational numbers. Then:
(a) Argue that $\mathbf{Q} \subset \mathbf{Q}(\sqrt{3}, \sqrt{2})$ is a Galois extension and find its Galois group.
(b) Prove that $\mathbf{Q}(\sqrt{3}, \sqrt{2})=\mathbf{Q}(\sqrt{2-\sqrt{3}})$.
5. Determine all (up to isomorphism) rings S such that there is a surjective ring homonorphism
$\mathbf{R}[X] /\left(X^{2}+2\right)(X-3)(X-2) \rightarrow S$ Here \mathbf{R} is the field of real numbers.
6. Let $k \subset L$ be a Galois extension where the degree of the extension is $17 \cdot 11 \cdot 7$. Argue that for every intermediate field K (so $k \subset K \subset L$) K is a Galois extension of k.
7. Let M consist of all the $n \times n$ matrices $A=\left(a_{i j}\right)$ over the field \mathbf{R} of real numbers whose trace is 0 (i.e. $\sum a_{i i}=0$). Then:
(a) Argue that M is a vector space over \mathbf{R}.
(b) Find the dimension of M.
(c) Decide if M is closed under the multiplication of matrices.
(d) If $A, B \in M$ show that $A B-B A$ cannot be the identity matrix.
8. Let $f(X)=X^{12}-1 \in \mathbf{Q}[X]$ (where \mathbf{Q} is the field of rational numbers). Then:
(a) Find the Galois group of the splitting field E of $f(X)$ over \mathbf{Q}.
(b) Find all the subfields of E.
9. Let $R=\mathbf{Z}[\sqrt{-5}]$ and let K be the field of fractions of R. Show that the polynomial $f(X)=3 X^{2}+4 X+3$ is irreducible in $R[X]$ but that it is reducible in $K[X]$.
