Algebra Prelim

January 2006

- 1. Prove that the symmetric group S_5 is generated by the two elements (1 2) and (1 2 3 4 5).
- 2. Let G be a group with |G| = 200. Show that G has a normal Sylow 5-subgroup which is abelian.
- 3. Let R be a ring (with identity) such that $a^2 = a$ for all $a \in R$. Prove that R is commutative.
- 4. Let \mathbf{Q} be the field of rational numbers. Then:
 - (a) Argue that $\mathbf{Q} \subset \mathbf{Q}(\sqrt{3}, \sqrt{2})$ is a Galois extension and find its Galois group.
 - (b) Prove that $\mathbf{Q}(\sqrt{3}, \sqrt{2}) = \mathbf{Q}(\sqrt{2-\sqrt{3}}).$
- 5. Determine all (up to isomorphism) rings S such that there is a surjective ring homonorphism $\mathbf{R}[X]/(X^2+2)(X-3)(X-2) \to S$ Here **R** is the field of real numbers.
- 6. Let $k \subset L$ be a Galois extension where the degree of the extension is $17 \cdot 11 \cdot 7$. Argue that for every intermediate field K (so $k \subset K \subset L$) K is a Galois extension of k.
- 7. Let *M* consist of all the $n \times n$ matrices $A = (a_{ij})$ over the field **R** of real numbers whose trace is 0 (i.e. $\sum a_{ii} = 0$). Then:
 - (a) Argue that M is a vector space over \mathbf{R} .
 - (b) Find the dimension of M.
 - (c) Decide if M is closed under the multiplication of matrices.
 - (d) If $A, B \in M$ show that AB BA cannot be the identity matrix.
- 8. Let $f(X) = X^{12} 1 \in \mathbf{Q}[X]$ (where **Q** is the field of rational numbers). Then:
 - (a) Find the Galois group of the splitting field E of f(X) over \mathbf{Q} .
 - (b) Find all the subfields of E.
- 9. Let $R = \mathbb{Z}[\sqrt{-5}]$ and let K be the field of fractions of R. Show that the polynomial $f(X) = 3X^2 + 4X + 3$ is irreducible in R[X] but that it is reducible in K[X].