Department of Mathematics
 University of Kentucky
 Algebra Prelim

January 2007

1. Let K be an infinite field and $n \geq 1$. Argue that there is an ideal I in $K[X]$, the polynomial ring in one variable over K, such that $K[X] / I$ is isomorphic to the product of n fields.
2. Let H, K be normal subgroups of a group G. Assume that $H \cap K=$ $\{1\}$. Also assume that both G / H and G / K are abelian.
Prove that G is abelian.
3. Let K be a field and $R=K[X]$, the polynomial ring in one variable over K.
Suppose $I \neq(1)$ is an ideal in R and there is an irreducible polynomial $f \in I$.
(a) Argue that I is a prime ideal generated by f.
(b) Give an example to prove that the result fails if we replace R by a polynomial ring in two variables. (Indeed, your example(s) should show that the ideal need not be prime or principal.)
4. Let F_{p} be the finite field with p elements. Let $F_{p}[X]$ be the polynomial ring in one variable over F_{p}.
If $f(X)$ is a monic irreducible polynomial of degree $n>1$ in $F_{p}[X]$ determine the order and the structure of the Galois group of $f(X)$ over F_{p}.
You may use known theorems, after stating them precisely.
Using this result or otherwise, determine the splitting field of the polynomial $g(X)=\left(X^{2}-2\right)\left(X^{3}+X+1\right)$ over the field F_{5}.
5. Let $G=<a>$ be a cyclic group of order n generated by a.

Let d be a positive integer and let

$$
\phi: G \rightarrow G
$$

be defined by $\phi(x)=x^{d}$ for all $x \in G$.
(a) Show that ϕ is a group homomorphism.
(b) Explain why $\operatorname{ker}(\phi)$ and $i m(\phi)$ are cyclic groups.
(c) If $n=48$ and $d=18$, then find $|\operatorname{ker}(\phi)|$ and $|i m(f)|$.

Find an explicit generator of $\operatorname{ker}(\phi)$ and a generator of $\operatorname{im}(\phi)$, in this case.
(d) Explain how to determine the generators for $\operatorname{ker}(\phi)$ and $\operatorname{im}(\phi)$ for general values of n, d.
6. Let $M_{2}(K)$ be the ring of 2×2 matrices over a field K.

Clarification. In this problem, use the following more general definition of a ring homomorphism:

A map F from ring R to ring S is said to be a homomorphism if
$\forall x, y \in R$ we have $F(x+y)=F(x)+F(y)$ and $F(x y)=F(x) F(y)$.
For $i, j=1,2$ define matrices $E_{i j}$ thus:
$E_{11}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), E_{12}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), E_{21}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), E_{22}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.

Let $\psi: M_{2}(K) \rightarrow K$ be a ring homomorphism. Carry out the following steps to show that ψ must be the zero map.
(a) Prove that for any ring homomorphism into K, the image of a nilpotent element is 0 and the image of an idempotent element is 1 or 0 .
Reminder: Definitions. An element x is nilpotent if $x^{n}=0$ for some positive n. An element x is idempotent if $x^{2}=x$.
(b) Deduce that $\psi\left(E_{i j}\right)=0$, if $i \neq j$ and $\psi\left(E_{i i}\right)=1$ or 0 for $i=1,2$.
(c) Establish a formula for ψ and conclude that ψ must be the zero map by considering the images of suitable products.
(d) Comment on the possibility of extending the result to $M_{n}(K)$ for $n \geq 3$.

