Department of Mathematics University of Kentucky Algebra Prelim

January 2007

- 1. Let K be an infinite field and $n \ge 1$. Argue that there is an ideal I in K[X], the polynomial ring in one variable over K, such that K[X]/I is isomorphic to the product of n fields.
- 2. Let H, K be normal subgroups of a group G. Assume that $H \cap K = \{1\}$. Also assume that both G/H and G/K are abelian. Prove that G is abelian.
- 3. Let K be a field and R = K[X], the polynomial ring in one variable over K.

Suppose $I \neq (1)$ is an ideal in R and there is an irreducible polynomial $f \in I$.

- (a) Argue that I is a prime ideal generated by f.
- (b) Give an example to prove that the result fails if we replace R by a polynomial ring in two variables. (Indeed, your example(s) should show that the ideal need not be prime or principal.)
- 4. Let F_p be the finite field with p elements. Let $F_p[X]$ be the polynomial ring in one variable over F_p .

If f(X) is a monic irreducible polynomial of degree n > 1 in $F_p[X]$ determine the order and the structure of the Galois group of f(X) over F_p .

You may use known theorems, after stating them precisely.

Using this result or otherwise, determine the splitting field of the polynomial $g(X) = (X^2 - 2)(X^3 + X + 1)$ over the field F_5 .

5. Let $G = \langle a \rangle$ be a cyclic group of order n generated by a.

Let d be a positive integer and let

$$\phi: G \to G$$

be defined by $\phi(x) = x^d$ for all $x \in G$.

- (a) Show that ϕ is a group homomorphism.
- (b) Explain why $ker(\phi)$ and $im(\phi)$ are cyclic groups.
- (c) If n = 48 and d = 18, then find |ker(φ)| and |im(f)|.
 Find an explicit generator of ker(φ) and a generator of im(φ), in this case.
- (d) Explain how to determine the generators for $ker(\phi)$ and $im(\phi)$ for general values of n, d.

Please turn over.

6. Let $M_2(K)$ be the ring of 2×2 matrices over a field K.

Clarification. In this problem, use the following more general definition of a ring homomorphism:

A map F from ring R to ring S is said to be a homomorphism if

$$\forall x, y \in R$$
 we have $F(x+y) = F(x) + F(y)$ and $F(xy) = F(x)F(y)$.

For i, j = 1, 2 define matrices E_{ij} thus:

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Let $\psi: M_2(K) \to K$ be a ring homomorphism. Carry out the following steps to show that ψ must be the zero map.

(a) Prove that for any ring homomorphism into K, the image of a nilpotent element is 0 and the image of an idempotent element is 1 or 0.

Reminder: Definitions. An element x is nilpotent if $x^n = 0$ for some positive n. An element x is idempotent if $x^2 = x$.

- (b) Deduce that $\psi(E_{ij}) = 0$, if $i \neq j$ and $\psi(E_{ii}) = 1$ or 0 for i = 1, 2.
- (c) Establish a formula for ψ and conclude that ψ must be the zero map by considering the images of suitable products.
- (d) Comment on the possibility of extending the result to $M_n(K)$ for $n \ge 3$.