Algebra Prelim

January 7, 2009

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let $n \in \mathbb{N}$ and F be a field. Suppose that $T: F \longrightarrow F^{n}$ is a linear transformation. Show the equivalence

$$
T \text { is injective } \Longleftrightarrow T \text { is not the zero map. }
$$

(2) Consider the real vector space $V=\{f: \mathbb{R} \longrightarrow \mathbb{R} \mid f$ continuously differentiable on $\mathbb{R}\}$ and the functions $p_{0}, p_{1}, p_{2} \in V$ defined as

$$
p_{0}(x)=1, p_{1}(x)=x, \text { and } p_{2}(x)=x^{2} \text { for all } x \in \mathbb{R} .
$$

Let W be the subspace of V generated by p_{0}, p_{1}, p_{2} and let $D: W \longrightarrow W, f \longmapsto f^{\prime}$ be the endomorphism of W given by differentiation.
(a) Argue that $\left\{p_{0}, p_{1}, p_{2}\right\}$ is a basis of W.
(b) Write the matrix representation of the endomorphism D with respect to the basis $\left\{p_{0}, p_{1}, p_{2}\right\}$.
(c) Compute the eigenvalues of D.
(d) For each eigenvalue λ you found in (c), compute the corresponding eigenspace, that is, the space $\{f \in W \mid D(f)=\lambda f\}$.
(3) Let (G, \cdot) be a finite group with identity element e and let H, K be cyclic normal subgroups of G such that $H \cap K=\{e\}$ and $|G|=|H| \cdot|K|$. Show
(a) H and K commute elementwise, that is, $h k=k h$ for all $h \in H$ and $k \in K$.
(b) If $|H|$ and $|K|$ are relatively prime, then G is cyclic.
(4) Show that there is no simple group of order 351 .
(5) Let $a, b \in \mathbb{Z}$ be given integers. Find all solutions $x \in \mathbb{Z}$ to the simultaneous congruences

$$
x \equiv a \bmod 8, \quad x \equiv b \bmod 3
$$

(6) Factor the following (possibly irreducible) polynomials into their irreducible factors in the given polynomial ring.
(a) $f:=2 x^{4}+200 x^{3}+2000 x^{2}+20000 x+20 \in \mathbb{Z}[x]$.
(b) $g:=x^{3}+2 x^{2}+x+2 \in \mathbb{Z}_{3}[x]$.
(c) $h:=5 x^{4}+4 x^{3}-2 x^{2}-3 x+21 \in \mathbb{Q}[x]$.
(7) Let $R=\{f:[0,1] \longrightarrow \mathbb{R} \mid f$ continuous $\}$ be the ring of all continuous functions from the interval $[0,1]$ to \mathbb{R} and let $c \in[0,1]$ be any fixed number.
Show that the subset $M_{c}=\{f \in R \mid f(c)=0\}$ is a maximal ideal in R.
[Hint: Consider the map $\psi: R \longrightarrow \mathbb{R}, f \longmapsto f(c)$.]
(8) (a) Compute the minimal polynomial m_{a} of $a=\sqrt{2+\sqrt{2}}$ over \mathbb{Q}.
(b) Show that $\mathbb{Q}(a)$ is the splitting field of m_{a} in \mathbb{C}.
[Hint: Show that $a^{-1}=\sqrt{2-\sqrt{2}} / \sqrt{2}$ and that $\sqrt{2} \in \mathbb{Q}(a)$.]
(c) Determine $\operatorname{Aut}(\mathbb{Q}(a) \mid \mathbb{Q})$.
(9) Let K be the splitting field of an irreducible and separable polynomial $f \in F[x]$ over the field F. Suppose that $\operatorname{Aut}(K \mid F)$ is abelian.
Show that $K=F(a)$ for each root $a \in K$ of f.
(10) Determine the automorphism type of the Galois group of $f=x^{3}-3 x+1 \in \mathbb{Q}[x]$.

