Algebra Prelim

January 7, 2009

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let $n \in \mathbb{N}$ and F be a field. Suppose that $T: F \longrightarrow F^n$ is a linear transformation. Show the equivalence

T is injective \iff T is not the zero map.

(2) Consider the real vector space $V = \{f : \mathbb{R} \longrightarrow \mathbb{R} \mid f \text{ continuously differentiable on } \mathbb{R}\}$ and the functions $p_0, p_1, p_2 \in V$ defined as

$$p_0(x) = 1, \ p_1(x) = x, \ \text{and} \ p_2(x) = x^2 \text{ for all } x \in \mathbb{R}.$$

Let W be the subspace of V generated by p_0, p_1, p_2 and let $D: W \longrightarrow W, f \longmapsto f'$ be the endomorphism of W given by differentiation.

- (a) Argue that $\{p_0, p_1, p_2\}$ is a basis of W.
- (b) Write the matrix representation of the endomorphism D with respect to the basis $\{p_0, p_1, p_2\}$.
- (c) Compute the eigenvalues of D.
- (d) For each eigenvalue λ you found in (c), compute the corresponding eigenspace, that is, the space $\{f \in W \mid D(f) = \lambda f\}$.
- (3) Let (G, \cdot) be a finite group with identity element e and let H, K be cyclic normal subgroups of G such that $H \cap K = \{e\}$ and $|G| = |H| \cdot |K|$. Show
 - (a) H and K commute elementwise, that is, hk = kh for all $h \in H$ and $k \in K$.
 - (b) If |H| and |K| are relatively prime, then G is cyclic.
- (4) Show that there is no simple group of order 351.
- (5) Let $a, b \in \mathbb{Z}$ be given integers. Find all solutions $x \in \mathbb{Z}$ to the simultaneous congruences

 $x \equiv a \mod 8, \quad x \equiv b \mod 3.$

- (6) Factor the following (possibly irreducible) polynomials into their irreducible factors in the given polynomial ring.
 - (a) $f := 2x^4 + 200x^3 + 2000x^2 + 20000x + 20 \in \mathbb{Z}[x].$ (b) $g := x^3 + 2x^2 + x + 2 \in \mathbb{Z}_3[x].$ (c) $h := 5x^4 + 4x^3 - 2x^2 - 3x + 21 \in \mathbb{Q}[x].$
- (7) Let R = {f: [0,1] → ℝ | f continuous} be the ring of all continuous functions from the interval [0,1] to ℝ and let c ∈ [0,1] be any fixed number.
 Show that the subset M_c = {f ∈ R | f(c) = 0} is a maximal ideal in R.
 [Hint: Consider the map ψ : R → ℝ, f ↦ f(c).]
- (a) Compute the minimal polynomial m_a of a = √2 + √2 over Q.
 (b) Show that Q(a) is the splitting field of m_a in C. [Hint: Show that a⁻¹ = √2 - √2/√2 and that √2 ∈ Q(a).]
 (c) Determine Aut(Q(a) | Q).
- (9) Let K be the splitting field of an irreducible and separable polynomial f ∈ F[x] over the field F. Suppose that Aut(K | F) is abelian.
 Show that K = F(a) for each root a ∈ K of f.
- (10) Determine the automorphism type of the Galois group of $f = x^3 3x + 1 \in \mathbb{Q}[x]$.