Algebra Prelim

January 11, 2010

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

1. Let V be a finite-dimensional vector space over a field k and let T be a linear transformation from V to V. Suppose that the images of T and T^{2} have the same dimension, i.e., $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$. Prove that the image and the kernel of T are disjoint, i.e., have only the zero common vector.
(We recall that T^{2} denotes the composition of T with itself.)
2. Let V be a finite-dimensional \mathbb{R}-vector space, and let T be a non-trivial linear transformation from V to V. Show that if $T^{3}=-T$, then either T has no real eigenvalues or 0 is the unique real eigenvalue of T. Furthermore, show that both cases do occur.
3. Let G be a finite cyclic group of order n with generator a. Prove that a^{i} has order $n / \operatorname{gcd}(i, n)$ for all $i \geq 1$.
4. Let G and H be groups. Let $\varphi: G \longrightarrow H$ be a surjective homomorphism and let K denote the kernel of φ. For $h \in H$ let $\varphi^{-1}(h)=\{g \in G \mid \varphi(g)=h\}$ be the fiber of h. Show that for all $h \in H$ we have

$$
\varphi^{-1}(h)=\widetilde{g} K=K \widetilde{g},
$$

where \widetilde{g} is any element of $\varphi^{-1}(h)$.
5. Let G be a simple group of order 168. How many elements of order 7 does G have?
6. An idempotent of a ring with identity is an element e such that $e^{2}=e$. Let T be a commutative ring with identity and let $e \in T$ be an idempotent. Prove that
(a) $f=1-e$ is an idempotent,
(b) $R=T e$ and $S=T f$ are rings,
(c) $T \simeq R \times S$.
7. Let R be a finite commutative ring with identity. Prove that every prime ideal of R is a maximal ideal.
8. Factor the following (possibly irreducible) polynomials into their irreducible factors in the given polynomial ring:
(a) $3 X^{3}-3 X^{2}-3 X-6 \in \mathbb{Z}[X]$;
(b) $X^{4}+1 \in(\mathbb{Z} / 2 \mathbb{Z})[X]$;
(c) $X^{7}-4-i \in \mathbb{Q}(i)[X]$;
9. Determine the splitting field $E \subset \mathbb{C}$ of $X^{4}-7 X^{2}+10$ over \mathbb{Q} and its automorphism group. Be sure to specify all the maps.
10. Let E be a splitting field of an irreducible and separable polynomial $f \in K[X]$ over the field K. Assume that the Galois group of E / K is abelian, and let $\alpha \in E$ be a root of f. Show that $E=K(\alpha)$ and $[E: K]=\operatorname{deg} f$.

