Algebra Prelim

January 5, 2011

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

1. (a) Let V be a 3 -dimensional vector space over a field K with basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Find a condition on the characteristic of K that guarantees that $\left\{v_{1}+v_{2}, v_{2}+v_{3}, v_{3}+v_{1}\right\}$ is also a basis of V.
(b) If V is a 4 -dimensional vector space with basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$, show that $\left\{v_{1}+v_{2}\right.$, $\left.v_{2}+v_{3}, v_{3}+v_{4}, v_{4}+v_{1}\right\}$ is not a basis of V.
(c) Conjecture a generalization to the case when $\left\{v_{1}+v_{2}, v_{2}+v_{3}, \ldots, v_{n}+v_{1}\right\}$ is a basis of V. In other words, for which n and which characteristic of K is $\left\{v_{1}+v_{2}, v_{2}+v_{3}\right.$, $\left.\ldots, v_{n}+v_{1}\right\}$ a basis of V (where $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V)? (You do not need to prove your conjecture.)
2. Let $f: V \rightarrow V$ be an endomorphism (linear transformation) of a finite-dimensional vector space V such that $f \circ f=f$, $\operatorname{ker} f \neq\{0\}$, and $\operatorname{im} f \neq\{0\}$.
(a) Find the eigenvalues of f.
(b) Show that f is diagonalizable and describe its diagonal matrix representation as closely as possible.
3. Let g be an element of a group G. If there are exactly two conjugates of g in G, show that either there are exactly two conjugates of g^{2} in G or g^{2} is in the center of G.
4. Let G be a cyclic group of order 168 that is generated by a. Consider the group homomorphism $\varphi: G \rightarrow G$, defined by $\varphi(a)=a^{105}$. Determine the order of $\operatorname{ker} \varphi$ and $\operatorname{im} \varphi$.
5. Find a generator of the ideal $I=(85,1+13 i)$ of $\mathbb{Z}[i] \subset \mathbb{C}$.
6. Let R be a factorial subring (UFD) of \mathbb{C} that does not contain $\sqrt{-5}$. Show that the rings $R[\sqrt{-5}]$ and $R[X] /\left(X^{2}+5\right)$ are isomorphic. (Notice that R is not necessarily a field.)
7. Let R be a commutative ring with identity 1 , and let I, J be ideals of R such that $I+J=R$. Without using the Chinese Remainder Theorem show:
(a) $I J=I \cap J$.
(b) There are elements $a \in I$ and $b \in J$ such that $a \equiv 1 \bmod J$ and $b \equiv 1 \bmod I$.
(c) The rings $R / I J$ and $R / I \oplus R / J$ are isomorphic.
8. Consider $\alpha:=\sqrt{2+\sqrt{3}} \in \mathbb{R}$.
(a) Determine the minimal polynomial f of α over \mathbb{Q}.
(b) Show that f splits over $\mathbb{Q}(\alpha)$.
(c) Determine abstractly the Galois group of f over \mathbb{Q}.
9. Let E / K be a Galois extension of degree 55 whose Galois group is not abelian. Determine the number of intermediate fields L with $K \subset L \subset E$ and $[L: K]=11$.
