Algebra Prelim

January 5, 2011

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

- (a) Let V be a 3-dimensional vector space over a field K with basis {v₁, v₂, v₃}. Find a condition on the characteristic of K that guarantees that {v₁ + v₂, v₂ + v₃, v₃ + v₁} is also a basis of V.
 - (b) If V is a 4-dimensional vector space with basis $\{v_1, v_2, v_3, v_4\}$, show that $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4 + v_1\}$ is not a basis of V.
 - (c) Conjecture a generalization to the case when $\{v_1 + v_2, v_2 + v_3, \ldots, v_n + v_1\}$ is a basis of V. In other words, for which n and which characteristic of K is $\{v_1 + v_2, v_2 + v_3, \ldots, v_n + v_1\}$ a basis of V (where $\{v_1, \ldots, v_n\}$ is a basis of V)? (You do not need to prove your conjecture.)
- **2.** Let $f: V \to V$ be an endomorphism (linear transformation) of a finite-dimensional vector space V such that $f \circ f = f$, ker $f \neq \{0\}$, and im $f \neq \{0\}$.
 - (a) Find the eigenvalues of f.
 - (b) Show that f is diagonalizable and describe its diagonal matrix representation as closely as possible.
- **3.** Let g be an element of a group G. If there are exactly two conjugates of g in G, show that either there are exactly two conjugates of g^2 in G or g^2 is in the center of G.
- 4. Let G be a cyclic group of order 168 that is generated by a. Consider the group homomorphism $\varphi : G \to G$, defined by $\varphi(a) = a^{105}$. Determine the order of ker φ and im φ .
- **5.** Find a generator of the ideal I = (85, 1 + 13i) of $\mathbb{Z}[i] \subset \mathbb{C}$.

- 6. Let R be a factorial subring (UFD) of \mathbb{C} that does not contain $\sqrt{-5}$. Show that the rings $R[\sqrt{-5}]$ and $R[X]/(X^2+5)$ are isomorphic. (Notice that R is not necessarily a field.)
- 7. Let R be a commutative ring with identity 1, and let I, J be ideals of R such that I + J = R. Without using the Chinese Remainder Theorem show:
 (a) IJ = I ∩ J.
 - (b) There are elements $a \in I$ and $b \in J$ such that $a \equiv 1 \mod J$ and $b \equiv 1 \mod I$.
 - (c) The rings R/IJ and $R/I \oplus R/J$ are isomorphic.
- 8. Consider $\alpha := \sqrt{2 + \sqrt{3}} \in \mathbb{R}$.
 - (a) Determine the minimal polynomial f of α over \mathbb{Q} .
 - (b) Show that f splits over $\mathbb{Q}(\alpha)$.
 - (c) Determine abstractly the Galois group of f over \mathbb{Q} .
- **9.** Let E/K be a Galois extension of degree 55 whose Galois group is not abelian. Determine the number of intermediate fields L with $K \subset L \subset E$ and [L:K] = 11.