Algebra Prelim

January, 2014

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary, you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

1. Let $a_{i} \in \mathbb{R}$ for $1 \leq i \leq n$ and set $f(x)=a_{1}+a_{2} x+\cdots+a_{n} x^{n-1}$. Show that

$$
\operatorname{det}\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\
a_{2} & a_{3} & a_{4} & \cdots & a_{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n-1} & a_{n} & a_{1} & \cdots & a_{n-2} \\
a_{n} & a_{1} & a_{2} & \cdots & a_{n-1}
\end{array}\right)=f\left(\zeta_{1}\right) f\left(\zeta_{2}\right) \cdots f\left(\zeta_{n}\right),
$$

where $\left\{\zeta_{1}, \ldots, \zeta_{n}\right\} \subset \mathbb{C}$ are the n-th roots of unity.
(Hint: show, for any i, that $\mathbf{v}_{i}=\left(1, \zeta_{i}, \zeta_{i}^{2}, \ldots\right)^{t}$ is an eigenvector for the given matrix.) The problem is incorrect as stated.
2. Let G be a group of order 2014. Determine, with proof, which of the following statements must be true.
(1) G is simple.
(2) G has a subgroup of index 2 .
(3) G is abelian.
(4) G is cyclic.
3. Let G be a group such that $G / Z(G)$ is abelian, where $Z(G)$ denotes the center of G. Let H be a non-trivial normal subgroup of G. Show that $H \cap Z(G)$ is a non-trivial subgroup.
4. Let $I_{c}=\left(2 Y^{2}-X^{3}, Y-X-c\right)$ be an ideal in the polynomial ring $\mathbb{Q}[X, Y]$ where $c \in \mathbb{Z}$.

Answer the following:
(1) Determine a value of c for which I_{c} is a prime ideal. In this case, determine if I is a maximal ideal or not.
(2) Determine a value of c for which I_{c} is not a prime ideal.
5. Let I be the ideal in $\mathbb{Q}[x]$ generated by the product $f(x) g(x)$, where

$$
f(x)=x^{4}+9 x-30 \quad g(x)=x^{2}+2
$$

Show that $\mathbb{Q}[x] / I$ is isomorphic to a product of two fields.
6. Prove that the polynomial $x^{4}+n x+1$ is irreducible over \mathbb{Q} for every integer $n \neq \pm 2$.
7. Consider the rings $R=\mathbb{Z}[\sqrt{-3}]$ and $S=\mathbb{Z}[i]$. Show that there is no ring homomorphism $\varphi: R \longrightarrow S$ such that $\varphi\left(1_{R}\right)=1_{S}$.
8. Let F be the finite field \mathbb{Z}_{7}.

Answer the following:
(1) Let K be the splitting field of $X^{3}+3$ over the field \mathbb{Z}_{7}. Determine the degree $[K: F]$.
(2) Similarly, let L be the splitting field of $X^{4}+4$ over the field \mathbb{Z}_{7}. Determine the degree $[L: F]$.
(3) What is the degree of the compositum of L and K over F ?
9. Let K denote the splitting field over the rational numbers \mathbb{Q} of the polynomial $f(x)=$ $x^{5}+x^{4}+3 x+3$.
(a) What is $[K: \mathbb{Q}]$?
(b) Determine the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.

