Algebra Prelim, January 10, 2019

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

- (1) Let U and V be finite-dimensional K-vector spaces and $T: U \to V$ be a surjective linear map. Show that there is a subspace $W \subseteq U$ such that the restriction $T|_W: W \to V$ is an isomorphism of K-vector spaces.
- (2) a) Let φ be an endomorphism on a K-vector space V. Set $U = kerf(\varphi)$, where f is a polynomial with coefficients in K. Show that U is a φ -invariant subspace of V.
 - b) Let φ be an endomorphism on an \mathbb{R} -vector space V whose dimension is an odd number. Argue that V has a one-dimensional φ -invariant subspace.
- (3) Let G be a group acting on a set X, and let $N \leq G$ be a normal subgroup.
 - a) State the definition of the kernel of a group action.
 - b) Let $g,h \in G$ and $a,b,x \in X$. Show that if h(a) = x and h(b) = g(x), then $(h^{-1}gh)(a) = b$.
 - c) Prove that, if the action of G on X is 2-transitive, and if N is not contained in the kernel of this action, then the action of N on X is transitive.
- (4) Let p be an odd prime and let G be a group of order $2^n p$. Let H be a Sylow 2-subgroup of G. Assume that H is a normal subgroup and that $H \cong (\mathbb{Z}/2\mathbb{Z})^n$. Prove that, if p does not divide $2^n 1$, then G has a nontrivial center.
- (5) Let F be a field and $R = F[x, x^2y, \ldots, x^{n+1}y^n, \ldots] \subset F[x, y]$ be the F-subalgebra generated by the monomials of the form $x^{n+1}y^n$ for all $n \in \mathbb{N}$.
 - a) Show that the field of quotients of R is equal to the field of quotients of F[x, y].
 - b) Show that R contains an infinite ascending chain of ideals $I_0 \subsetneq I_1 \subsetneq \cdots \subsetneq I_n \subsetneq \cdots$.
- (6) Let R be an integral domain, and suppose that every decreasing chain of ideals

$$I_1 \supsetneq I_2 \supsetneq I_3 \supsetneq \cdots$$

is finite in length. Show that R is a field.

- (7) Let $K \subseteq L$ be a field extension.
 - a) Show that $\alpha \in L$ is algebraic over K if and only if $K(\alpha)$ is finite dimensional as a K-vector space.
 - b) Use part (a) to show that, if $\alpha \in L$ is algebraic over K, then $\beta \in L$ is algebraic over K if and only if β is algebraic over $K(\alpha)$.
 - c) Use parts (a) and (b) to show that the set of elements of L that are algebraic over K is a field.
- (8) Let ζ_n denote a primitive *n*-th root of unity. Find all subfields of $\mathbb{Q}(\zeta_8)$ and $\mathbb{Q}(\zeta_{12})$. Justify your answer.
- (9) Let \mathbb{F}_q denote the field with q elements. How many monic irreducible polynomials of degree 2 are in $\mathbb{F}_q[x]$? Justify your answer.