Algebra Prelim, January 10, 2019

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

(1) Let U and V be finite-dimensional K-vector spaces and $T: U \rightarrow V$ be a surjective linear map. Show that there is a subspace $W \subseteq U$ such that the restriction $\left.T\right|_{W}: W \rightarrow V$ is an isomorphism of K-vector spaces.
(2) a) Let φ be an endomorphism on a K-vector space V. Set $U=\operatorname{kerf}(\varphi)$, where f is a polynomial with coefficients in K. Show that U is a φ-invariant subspace of V.
b) Let φ be an endomorphism on an \mathbb{R}-vector space V whose dimension is an odd number. Argue that V has a one-dimensional φ-invariant subspace.
(3) Let G be a group acting on a set X, and let $N \unlhd G$ be a normal subgroup.
a) State the definition of the kernel of a group action.
b) Let $g, h \in G$ and $a, b, x \in X$. Show that if $h(a)=x$ and $h(b)=g(x)$, then $\left(h^{-1} g h\right)(a)=b$.
c) Prove that, if the action of G on X is 2 -transitive, and if N is not contained in the kernel of this action, then the action of N on X is transitive.
(4) Let p be an odd prime and let G be a group of order $2^{n} p$. Let H be a Sylow $2-$ subgroup of G. Assume that H is a normal subgroup and that $H \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$. Prove that, if p does not divide $2^{n}-1$, then G has a nontrivial center.
(5) Let F be a field and $R=F\left[x, x^{2} y, \ldots, x^{n+1} y^{n}, \ldots\right] \subset F[x, y]$ be the F-subalgebra generated by the monomials of the form $x^{n+1} y^{n}$ for all $n \in \mathbb{N}$.
a) Show that the field of quotients of R is equal to the field of quotients of $F[x, y]$.
b) Show that R contains an infinite ascending chain of ideals $I_{0} \subsetneq I_{1} \subsetneq \cdots \subsetneq I_{n} \subsetneq \cdots$.
(6) Let R be an integral domain, and suppose that every decreasing chain of ideals

$$
I_{1} \supsetneq I_{2} \supsetneq I_{3} \supsetneq \cdots
$$

is finite in length. Show that R is a field.
(7) Let $K \subseteq L$ be a field extension.
a) Show that $\alpha \in L$ is algebraic over K if and only if $K(\alpha)$ is finite dimensional as a K-vector space.
b) Use part (a) to show that, if $\alpha \in L$ is algebraic over K, then $\beta \in L$ is algebraic over K if and only if β is algebraic over $K(\alpha)$.
c) Use parts (a) and (b) to show that the set of elements of L that are algebraic over K is a field.
(8) Let ζ_{n} denote a primitive n-th root of unity. Find all subfields of $\mathbb{Q}\left(\zeta_{8}\right)$ and $\mathbb{Q}\left(\zeta_{12}\right)$. Justify your answer.
(9) Let \mathbb{F}_{q} denote the field with q elements. How many monic irreducible polynomials of degree 2 are in $\mathbb{F}_{q}[x]$? Justify your answer.

