Algebra Prelim, January 7, 2022

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even though you may not have successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.

Good luck!

- (1) Let $n \in \mathbb{N}$ and \mathbb{F} be a field. Let $A, B \in \mathbb{F}^{n \times n}$.
 - a) Suppose A is invertible. Show that AB and BA have the same minimal polynomial. [Hint: One option is to consider f(AB)A for $f \in \mathbb{F}[x]$.]
 - b) Give an example showing that AB and BA do not have the same minimal polynomial if neither matrix is invertible.
- (2) Let V be a vector space over a field K and let $W \subseteq V$ be a subspace. The dual space of V, written V^* , is defined to be the set of all linear maps $f: V \to K$. Similarly, W^* is the set of all linear maps $f: W \to K$. Define a map $\pi: V^* \to W^*$ by $\pi(f) = f|_W$, where $f|_W$ denotes the restriction of f to W. Prove that π is a surjective map.
- (3) Let p, q be primes such that 2 . Let G be a group of order <math>2pq.
 - a) Show that G is not simple.
 - b) Show that G is solvable.

[Fun fact: 2022 is of the form 2pq.]

- (4) a) How many conjugates does (12)(3456) have in S₇?
 b) How many elements in S₇ commute with (12)(3456)? Describe these elements.
- (5) Let \mathbb{K} be a field. Recall that a \mathbb{K} -algebra automorphism of the ring $\mathbb{K}[x]$ is a ring automorphism $\phi : \mathbb{K}[x] \to \mathbb{K}[x]$ such that $\phi(\alpha) = \alpha$ for every element $\alpha \in \mathbb{K}$. Let $\operatorname{Aut}(\mathbb{K}[x] | \mathbb{K})$ denote the group of \mathbb{K} -algebra automorphisms of $\mathbb{K}[x]$.
 - a) Show that any $\phi \in \operatorname{Aut}(\mathbb{K}[x] | \mathbb{K})$ is determined by the image $\phi(x)$ of $x \in \mathbb{K}[x]$, and that $\phi(x) = \alpha x + \beta$ for some $\alpha \in \mathbb{K} \setminus \{0\}$ and $\beta \in \mathbb{K}$.
 - b) Show that any $\alpha \in \mathbb{K} \setminus \{0\}$ and $\beta \in \mathbb{K}$ determine a unique element $\phi_{\alpha,\beta} \in \operatorname{Aut}(\mathbb{K}[x] | \mathbb{K})$.
 - c) Compute $\phi_{\alpha,\beta}^{-1}$ for $\alpha \in \mathbb{K} \setminus \{0\}$ and $\beta \in \mathbb{K}$.
 - d) Show that elements of the form $\phi_{1,\beta}$ with $\beta \in \mathbb{K}$ form a normal subgroup of $\operatorname{Aut}(\mathbb{K}[x] | \mathbb{K})$.

- (6) Let R be a commutative ring with identity. Denote its group of units by R^* . Let $I \subset R$ be an ideal. Show that the following are equivalent.
 - a) I is the unique maximal ideal of R.
 - b) $R \setminus I = R^*$.
 - c) I is a maximal ideal and $1 + a \in R^*$ for all $a \in I$.

[You may use without proof that every proper ideal is contained in a maximal ideal.]

- (7) Let $\mathbb{K} | \mathbb{F}$ be a finite extension of fields and assume that \mathbb{F} has characteristic p > 0. Recall that $\mathbb{K}^p = \{a^p \mid a \in \mathbb{K}\}.$
 - a) Prove that \mathbb{K}^p is a subfield of \mathbb{K} .
 - b) Prove that $[\mathbb{K}:\mathbb{F}] = [\mathbb{K}^p:\mathbb{F}^p].$
 - c) Prove that $[\mathbb{F}:\mathbb{F}^p] = [\mathbb{K}:\mathbb{K}^p].$
- (8) Let $f = x^4 2 \in \mathbb{Q}[x]$.
 - a) Show that $\mathbb{Q}[x]/(f)$ is a field.
 - b) Let \mathbb{E} be a splitting field of f over \mathbb{Q} . Show that $[\mathbb{E} : \mathbb{Q}] = 8$.
 - c) Determine the number of field homomorphisms from \mathbb{E} to \mathbb{C} .
 - d) Let G be the Galois group of f over \mathbb{Q} and \mathcal{X} be the set of roots of f in \mathbb{E} . Show that for every root $\alpha \in \mathcal{X}$ there exists a $\sigma \in G \setminus {\mathrm{id}_{\mathbb{E}}}$ such that $\sigma(\alpha) = \alpha$. [Hint: One option is to consider the action of G on \mathcal{X} .]
- (9) Let \mathbb{F} be a field of characteristic zero and let $\mathbb{F}(\alpha, \beta) | \mathbb{F}$ be a finite Galois extension. Assume furthermore that $\mathbb{F}(\alpha) | \mathbb{F}$ and $\mathbb{F}(\beta) | \mathbb{F}$ are also Galois extensions and that $\mathbb{F}(\alpha) \cap \mathbb{F}(\beta) = \mathbb{F}$. Set $G = \operatorname{Gal}(\mathbb{F}(\alpha, \beta) | \mathbb{F}(\alpha + \beta))$. Let $\sigma \in G$. Show the following.
 - a) $\sigma(\alpha) \alpha = \beta \sigma(\beta)$, and this element is in \mathbb{F} .
 - b) $\sigma^m(\alpha) = m\sigma(\alpha) (m-1)\alpha$ for all $m \in \mathbb{N}$.

[Hint: Induct on m and make sure to cover m = 2.]

c) $\mathbb{F}(\alpha, \beta) = \mathbb{F}(\alpha + \beta).$

[Hint: Use that G is finite.]

Make sure to explain where the characteristic of \mathbb{F} is needed.