Algebra Prelim, January 6, 2023

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even if you did not successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.
- All problems carry the same weight.

Good luck!

(1) Let V be a vector space over \mathbb{R} or \mathbb{C} endowed with an inner product $\langle \cdot, \cdot \rangle$. Suppose $\{v_1, \ldots, v_r\}$ is an orthonormal basis of V. Show that every $v \in V$ satisfies

$$v = \sum_{i=1}^{r} \langle v, v_i \rangle v_i.$$

- (2) Let p ≥ 3 be a prime number and k ≤ p − 2. Show that the identity matrix I_k is the only matrix A ∈ GL_k(Q) such that A^p = I_k.
 [Hint: Consider the minimal polynomial of A.]
- (3) Let G be a group acting on a set X, where |X| > 1. Suppose the following:
 - i) G acts transitively on X (that is, for all $x, y \in X$ there exists $g \in G$ such that $g \cdot x = y$).
 - ii) Every $g \in G$ has a fixed point in X (that is, $g \cdot x = x$ for some $x \in X$).

Denote by G_x the stabilizer of $x \in X$ in G.

- a) Let $x \in X$. Show that $G_x \neq G$.
- b) Fix $a \in X$ and set $H = G_a$. Show that $G = \bigcup_{g \in G} gHg^{-1}$.
- (4) Consider the symmetric group S_8 .
 - a) Determine the number of 5-cycles in S_8 .
 - b) Let $\sigma \in S_8$ be an element of order 15. Determine the cycle type of σ .
 - c) Determine the number of elements of order 15 in S_8 .
- (5) Let R be a UFD and $P \subset R$ be a prime ideal. Suppose the only prime ideals contained in P are 0 and P. Show that P is a principal ideal.

(6) Consider the ring of Gaussian integers $R = \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$. Let

$$J = \{25x + (7+i)y \mid x, y \in \mathbb{Z}\}.$$

a) Show that if $iJ \subseteq J$ then J is an ideal in R.

One can easily see that $iJ \subseteq J$ is indeed true and thus J is an ideal. Use this fact without proof for the following parts.

- b) Show that the ring homomorphism $\phi : \mathbb{Z} \longrightarrow R/J, a \longmapsto a + J$ is surjective. [Hint: Find first a pre-image of i + J.]
- c) Determine $\ker \phi$.
- d) Determine the order of the multiplicative group $(R/J)^*$.
- e) Show that the group of units $(R/J)^*$ is cyclic.

(7) Let
$$f = x^7 + x + 1 \in \mathbb{F}_2[x]$$
.

- a) Show that f has no roots in \mathbb{F}_2 , \mathbb{F}_4 , and \mathbb{F}_8 . [Hint: For \mathbb{F}_4 and \mathbb{F}_8 make use of the multiplicative order of their elements.]
- b) Show that f is irreducible.[Hint: Consider the degree of an irreducible factor.]
- (8) Let $f = x^5 + 5 \in \mathbb{Q}[x]$ and $E \subseteq \mathbb{C}$ be the splitting field of f over \mathbb{Q} . Let $G := \operatorname{Gal}(E \mid \mathbb{Q})$ and set $\alpha = \sqrt[5]{-5}$ and $\zeta = e^{\frac{2\pi i}{5}}$.
 - a) Show that $E = \mathbb{Q}(\alpha, \zeta)$.
 - b) Determine $[E : \mathbb{Q}]$.
 - c) Find a subfield F of E that is not Galois over \mathbb{Q} .
 - d) Show that G is not abelian.
 - e) Show that G contains a nontrivial normal subgroup.
- (9) Let E | F be a Galois extension of degree $132 = 2^2 \cdot 3 \cdot 11$. Show that there exists a field \widehat{F} such that $F \subsetneq \widehat{F} \subsetneq E$ and $\widehat{F} | F$ is Galois.