## Algebra Prelim, January 6, 2023

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even if you did not successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.
- All problems carry the same weight.


## Good luck!

(1) Let $V$ be a vector space over $\mathbb{R}$ or $\mathbb{C}$ endowed with an inner product $\langle\cdot, \cdot\rangle$. Suppose $\left\{v_{1}, \ldots, v_{r}\right\}$ is an orthonormal basis of $V$. Show that every $v \in V$ satisfies

$$
v=\sum_{i=1}^{r}\left\langle v, v_{i}\right\rangle v_{i}
$$

(2) Let $p \geq 3$ be a prime number and $k \leq p-2$. Show that the identity matrix $I_{k}$ is the only matrix $A \in \mathrm{GL}_{k}(\mathbb{Q})$ such that $A^{p}=I_{k}$.
[Hint: Consider the minimal polynomial of $A$.]
(3) Let $G$ be a group acting on a set $X$, where $|X|>1$. Suppose the following:
i) $G$ acts transitively on $X$ (that is, for all $x, y \in X$ there exists $g \in G$ such that $g \cdot x=y$ ).
ii) Every $g \in G$ has a fixed point in $X$ (that is, $g \cdot x=x$ for some $x \in X$ ).

Denote by $G_{x}$ the stabilizer of $x \in X$ in $G$.
a) Let $x \in X$. Show that $G_{x} \neq G$.
b) Fix $a \in X$ and set $H=G_{a}$. Show that $G=\bigcup_{g \in G} g H g^{-1}$.
(4) Consider the symmetric group $S_{8}$.
a) Determine the number of 5 -cycles in $S_{8}$.
b) Let $\sigma \in S_{8}$ be an element of order 15 . Determine the cycle type of $\sigma$.
c) Determine the number of elements of order 15 in $S_{8}$.
(5) Let $R$ be a UFD and $P \subset R$ be a prime ideal. Suppose the only prime ideals contained in $P$ are 0 and $P$. Show that $P$ is a principal ideal.
(6) Consider the ring of Gaussian integers $R=\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$. Let

$$
J=\{25 x+(7+i) y \mid x, y \in \mathbb{Z}\} .
$$

a) Show that if $i J \subseteq J$ then $J$ is an ideal in $R$.

One can easily see that $i J \subseteq J$ is indeed true and thus $J$ is an ideal. Use this fact without proof for the following parts.
b) Show that the ring homomorphism $\phi: \mathbb{Z} \longrightarrow R / J, a \longmapsto a+J$ is surjective.
[Hint: Find first a pre-image of $i+J$.]
c) Determine ker $\phi$.
d) Determine the order of the multiplicative group $(R / J)^{*}$.
e) Show that the group of units $(R / J)^{*}$ is cyclic.
(7) Let $f=x^{7}+x+1 \in \mathbb{F}_{2}[x]$.
a) Show that $f$ has no roots in $\mathbb{F}_{2}, \mathbb{F}_{4}$, and $\mathbb{F}_{8}$.
[Hint: For $\mathbb{F}_{4}$ and $\mathbb{F}_{8}$ make use of the multiplicative order of their elements.]
b) Show that $f$ is irreducible.
[Hint: Consider the degree of an irreducible factor.]
(8) Let $f=x^{5}+5 \in \mathbb{Q}[x]$ and $E \subseteq \mathbb{C}$ be the splitting field of $f$ over $\mathbb{Q}$. Let $G:=\operatorname{Gal}(E \mid \mathbb{Q})$ and set $\alpha=\sqrt[5]{-5}$ and $\zeta=e^{\frac{2 \pi i}{5}}$.
a) Show that $E=\mathbb{Q}(\alpha, \zeta)$.
b) Determine $[E: \mathbb{Q}]$.
c) Find a subfield $F$ of $E$ that is not Galois over $\mathbb{Q}$.
d) Show that $G$ is not abelian.
e) Show that $G$ contains a nontrivial normal subgroup.
(9) Let $E \mid F$ be a Galois extension of degree $132=2^{2} \cdot 3 \cdot 11$. Show that there exists a field $\widehat{F}$ such that $F \subsetneq \widehat{F} \subsetneq E$ and $\widehat{F} \mid F$ is Galois.

