Algebra Prelim, January 5, 2024

- Provide proofs for all statements, citing theorems that may be needed.
- If necessary you may use the results from other parts of this test, even if you did not successfully proved them.
- Do as many problems as you can and present your solutions as carefully as possible.
- The points shown below give an indication about the weight of each problem (the weight may not split evenly across the individual parts of a problem). Pass/fail is based on the overall performance: completeness, rigor, and presentation.

Good luck!

Notation: $F^{n \times m}$ denotes the set of all $n \times m$-matrices with entries in the field F. For any ring R we denote by R^{*} its group of units. $\mathrm{GL}_{n}(F)$ denotes the general linear group of degree n, that is the group of units in the matrix ring $F^{n \times n}$.
(1) (10 points) Let F be an algebraically closed field and $A \in F^{n \times n}$. Show

$$
A^{n}=0 \Longleftrightarrow I_{n}-\lambda A \in \mathrm{GL}_{n}(F) \text { for all } \lambda \in F
$$

Make sure to explain where you need that F is algebraically closed.
(2) (10 points) Let F be a field and $n_{1}, n_{2} \in \mathbb{N}$. Set $n=n_{1}+n_{2}$. Let $A_{i} \in F^{n_{i} \times n_{i}}$ and consider the block diagonal matrix

$$
A=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right) \in F^{n \times n}
$$

Suppose A is diagonalizable, say $S^{-1} A S=D$, where D is diagonal and $S \in \mathrm{GL}_{n}(F)$. Write

$$
S=\binom{S_{1}}{S_{2}}, \quad \text { where } S_{i} \in F^{n_{i} \times n}
$$

Note that the partitioning of the matrices allows for block matrix multiplication.
a) Show that the nonzero columns of S_{i} are eigenvectors of A_{i}.
b) Show that A_{1} and A_{2} are diagonalizable.
(3) (10 points)
a) Let G_{1}, G_{2}, G be abelian groups with + as operation. Suppose there exist group homomorphisms $\phi_{i}: G_{i} \longrightarrow G$. Show that the map $\left(g_{1}, g_{2}\right) \rightarrow \phi_{1}\left(g_{1}\right)+\phi_{2}\left(g_{2}\right)$ defines a group homomorphism from $G_{1} \times G_{2}$ to G.
b) Show that for every $n \in \mathbb{N}$ there exists an element of order n in the group $(\mathbb{Q} / \mathbb{Z},+)$.
c) Show that for every finitely generated abelian group $(G,+)$ there exists a non-trivial group homomorphism $\psi: G \longrightarrow \mathbb{Q} / \mathbb{Z}$.
[Hint: You may use the Fundamental Theorem of Finitely Generated Abelian Groups.]
(4) (10 points) Let G be a finite group and $\mathcal{X}=\{H \leq G\}$, that is, \mathcal{X} is the set of all subgroups of G. Consider the action

$$
G \times \mathcal{X} \longrightarrow \mathcal{X}, \quad(g, H) \longmapsto g H g^{-1}
$$

and denote by \mathcal{O}_{H} the orbit of $H \in \mathcal{X}$. (You do not need to show that the above is a group action.) Show the following.
a) For any $H \in \mathcal{X}$ we have $\left|\mathcal{O}_{H}\right|=1 \Longleftrightarrow H \unlhd G$.
b) Let p be a prime and G be a nontrivial p-group. Let $n=|\mathcal{X}|$ and m be the number of normal subgroups of G. Show that $p \mid(n-m)$.
(5) (15 points) Let R be a commutative ring that contains a field F as a subring. Suppose R is a 2 -dimensional F-vector space. Show the following:
a) There exists an element $a \in R$ such that $R=F[a]$.
b) There exists a monic polynomial $f \in F[x]$ of degree 2 such that $R \cong F[x] /(f)$.
c) R is either a field or isomorphic to one of the rings $F \times F$ and $F[x] /\left(x^{2}\right)$.
d) $F \times F$ and $F[x] /\left(x^{2}\right)$ are not isomorphic.
(6) (10 points) Let R be a principal ideal domain and let F be the field of fractions of R. Let $c \in F$. Prove that every finitely generated ideal in $R[c]$ is a principal ideal.
(7) (10 points) Let \mathbb{F}_{q} be the finite field with q elements. Let ℓ be a prime number such that $\ell \nmid q$. Suppose that for some $a \in \mathbb{F}_{q}$ the polynomial $x^{\ell}-a \in \mathbb{F}_{q}[x]$ is irreducible. Prove that $q \equiv 1 \bmod \ell$.
[Hint: For one possible solution, consider the group homomorphism $\mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*}, x \mapsto x^{\ell}$.]
(8) (10 points) Let $p \geq 3$ be prime and $\zeta \in \mathbb{C}$ be a primitive p-th root of unity.
a) Show that $\left[\mathbb{Q}(\zeta): \mathbb{Q}\left(\zeta+\zeta^{-1}\right)\right]=2$.
b) Show that $\mathbb{Q}\left(\zeta+\zeta^{-1}\right) \mid \mathbb{Q}$ is Galois with cyclic Galois group of order $(p-1) / 2$.
(9) (10 points) Let E be a subfield of \mathbb{C} such that $E \mid \mathbb{Q}$ is Galois and $G:=\operatorname{Gal}(E \mid \mathbb{Q})$ is cyclic of order 4 , say $G=\langle\sigma\rangle$.
a) Show that E is closed under complex conjugation.
b) Show that $i \notin E$.
[Hint: Consider the fixed field $\operatorname{Fix}\left(\left\langle\sigma^{2}\right\rangle\right)$.]

