Algebra Prelim

June 2005

1. Let $K:=\mathbb{Z} / 3 \mathbb{Z}$ and let α be a root of $X^{3}+2 X+1 \in K[X]$ in some extension field of K. Show that $X^{3}+2 X+1$ is irreducible over K and compute the multiplicative inverse of $\alpha+1$ in $K[\alpha]$.
2. Let \mathbb{R} denote the field of real numbers. Determine up to isomorphism all rings S such that there is a surjective ring homomorphism $\mathbb{R}[X] /\left(X^{2}+1\right)(X-2)(X-3) \rightarrow S$.
3. A commutative ring R is a PIR (principal ideal ring) if each ideal of R is a principal ideal. Let I be an ideal of the ring R. If R is a PIR, then show that R / I is a PIR. If R / I is a PIR, does it follow that R is a PIR? Why, or why not?
4. Let K be any field and let $a_{1}, \ldots, a_{n} \in K$ be n different elements. Let $b_{1}, \ldots, b_{n} \in K$ be any elements. Show that there is a unique polynomial $f \in K[X]$ of degree $<n$ such that $f\left(a_{i}\right)=b_{i}$ for all $i=1, \ldots, n$.
5. Factor the following polynomials into irreducible factors in $\mathbb{Z}[X]$:

$$
\begin{aligned}
& 4 X^{2}+10 X+6 \\
& X^{8}-4 \\
& X^{16}-15 X+35
\end{aligned}
$$

6. Let $f:=X^{12}-1 \in \mathbb{Q}[X]$.
(a) Compute the Galois group $G(f, \mathbb{Q})$.
(b) Let E be the splitting field of f over \mathbb{Q}. Determine all subfields of E.
7. Let G be a group of order 200. Show that G has a Sylow 5 -subgroup that is normal and abelian.
8. Decide whether there is field K such that the following groups are isomorphic to the multiplicative group of K. Either find K or explain why there is no such K.
(a) $\mathbb{Z}_{3} \times \mathbb{Z}_{8}$
(b) $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$
9. Let A be an $m \times n$ matrix with entries in a field k. Show that the rank of A is m if and only if the matrix equation $A \vec{x}=\vec{b}$ has a solution for each vector $\vec{b} \in k^{(m)}$.
10. Let G be a finite group.
(a) Write down the class equation for G.
(b) Use (a) to prove that if p is a prime number and $|G|=p^{a}$ for some $a \geq 1$, then G has a nontrivial center.
