Algebra Prelim

June 2006

1. Let $g, h \in G$ where G is a group. Suppose that $g h=h g$ and that $|g|=10$ and that $|h|=12$. Prove that $|g h| \geq 30$.
2. Prove that the symmetric group S_{5} is generated by the two permutations (12) ○ (345) and (12345).
3. Let V be a vector space of dimension 8 over some field k. Let $T: V \rightarrow V$ be a linear transformations such that $\operatorname{dim}(\operatorname{ker}(T))=1$. Then:
(a) Determine the possibilities for the dimensions of $T(V), T^{2}(V)=$ $T(T(V)), T^{3}(V)=T\left(T^{2}(V)\right), \ldots$
(b) Argue that if $T^{n}=0$ for some $n \geq 1$ then $n \geq 8$ and in fact that in this case $T^{8}=0$.
4. (a) Let G be a finite group. Suppose that G has exactly 5 Sylow p-subgroups for some prime p. Explain why G has an element of order 5 and an element of order 2.
(b) Now let G be a finite group such that G has exactly $1+2^{n}$ Sylow p-subgroups for some prime p and some $n \geq 1$. Explain why G has an element of order q for each prime q that divides $1+2^{n}$ and also has an element of order 2.
5. Let \Re be the field of real numbers. Consider the ring homomorphism $\phi: \Re[x] \rightarrow M_{2}(\Re)$ (where $M_{2}(\Re)$ is the ring of 2×2 matrices over \Re) that maps $r \in \Re$ to $\left(\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right)$ and that maps x to $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. Then:
(a) Find the kernel of ϕ.
(b) Find the dimension of $\Re[x] / \operatorname{ker}(\phi)$ as a vector space over \Re
(c) Is $\Re[x] / \operatorname{ker}(\phi)$ an integral domain or not? Explain your answer.
6. Let R be a commutative ring. Suppose that for some $a, b \in R$ we have $a s+b t=1$ for some $s, t \in R$. Then:
(a) Prove that the function $r \mapsto(r+(a), r+(b))$ from R to $R /(a) \times$ $R /(b)$ is surjective and that its kernel is $(a) \cap(b)$
(b) Show that $(a) \cap(b)=(a b)$
(c) Consider $17,33 \in \mathbb{Z}$. Find all integers n such that n has a remainder of 3 when divided by 13 and a remainder of 5 when divided by 33 .
7. Let $\mathbb{C}(x)$ be the field of fractions of $\mathbb{C}[x]$ where \mathbb{C} is the field of complex numbers. Let $\zeta_{6} \in \mathbb{C}$ be a primitive 6 -th root of unity. Consider the unique homomorphism $\sigma: \mathbb{C}(x) \rightarrow \mathbb{C}(x)$ over \mathbb{C} such that $\sigma(x)=\zeta_{6} x$. Then:
(a) Find the order of σ as an element of the group of automorphism of $\mathbb{C}(x)$, i.e. of $\operatorname{Aut}(\mathbb{C}(x))$.
(b) Argue that $\mathbb{C}\left(x^{6}\right)$ is in the fixed field of σ.
(c) Show that $\mathbb{C}\left(x^{6}\right) \subset \mathbb{C}(x)$ is a Galois extension and give its Galois group.
(d) Note that $\mathbb{C}\left(x^{6}\right) \subset \mathbb{C}\left(x^{3}\right) \subset \mathbb{C}(x)$. Using this, determine $\operatorname{Gal}\left(\mathbb{C}(x) / \mathbb{C}\left(x^{3}\right)\right)$ as a subgroup of $\operatorname{Gal}\left(\mathbb{C}(x) / \mathbb{C}\left(x^{6}\right)\right)$.
8. Let k be a finite field. Let $f(x) \in k[x]$ be such that $f(0) \neq 0$ and such that $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=1$. Prove that for some $n \geq 1, f(x)$ divides $x^{n}-1$ in $k[x]$.
