Department of Mathematics
 University of Kentucky
 Algebra Prelim

Provide proofs for all statements, citing any theorems
that may be needed.
In the following, \mathbb{Z} denotes the ring of integers. We write \mathbb{Z}_{n} for $\mathbb{Z} / n \mathbb{Z}$.

June 2007

1. Let C be a cyclic group of order 6 . Find necessary and sufficient conditions on a group G in order that $C \times G$ be a cyclic group.
2. Let R be a non-zero ring containing $1 \neq 0$ such that the function $r \mapsto r^{2}$ from R to R is a homomorphism of rings. Prove that R is a commutative ring of characteristic 2 .
3. Prove that the group of automorphisms of the abelian group $\mathbb{Z}_{3} \times \mathbf{Z}$ has 12 elements.
4. Precisely state the Sylow Theorems.

Let G be a group of order 105 .
Let $n_{p}(G)$ denote the number of p-Sylow subgroups of G as usual.
For each prime p less than 10 determine possible values of $n_{p}(G)$ and the corresponding estimate of number of elements of order p in G.
Using these calculations or otherwise prove that G cannot be simple.
5. Let $k \subset L$ be a Galois extension where $|\operatorname{Gal}(L / k)|=75$.
(a) Prove that there is a unique field F with $k \subset F \subset L$ such that $[F: k]=3$.
(b) Prove that the field F constructed above is a Galois extension of k.
6. Let V be a 3-dimensional vector space over a field k. Assume that you have three linear transformations f, g, h from V to k with the following properties.

- There is $u \in V$ such that $f(u)=1, g(u)=h(u)=0$.
- There is $v \in V$ such that $g(v)=h(v)=1$.
- There is $w \in V$ such that $g(w)=2, h(w)=3$.

Define a linear transformation from V to k^{3} by $L(t)=\left(\begin{array}{c}f(t) \\ g(t) \\ h(t)\end{array}\right)$.
Answer the following:
(a) Determine if L is surjective.
(b) Determine if L is injective.
(c) Determine $\operatorname{Ker}(f) \cap \operatorname{Ker}(g) \cap \operatorname{Ker}(h)$.
7. Consider the polynomial $X^{5}-2$ over \mathbb{Z}_{11} and let $R=\mathbb{Z}_{11}[X] /\left(X^{5}-2\right)$. As usual, identify \mathbb{Z}_{11} with its image in R.
Define the ring homomorphism $\sigma: R \rightarrow R$ by $\sigma(t)=t^{11}$ for all $t \in R$.
(a) Determine the order of σ (i.e. the smallest n such that $\sigma^{n}=I d$).
(b) Using the above or otherwise, argue that R is a field.
(c) Determine the Galois group of R over \mathbb{Z}_{11}.
8. Give the precise definition of a prime ideal and a maximal ideal in a commutative ring T with $1 \neq 0$.
Let $R=\mathbb{Z}[X]$.
(a) Determine with proof if $I=\left(X^{4}+2, X^{2}+1\right) \subset R$ is prime or maximal or neither.
(b) Determine with proof if $J=\left(X^{4}+X, X^{2}+1\right) \subset R$ is prime or maximal or neither.

