Department of Mathematics University of Kentucky Algebra Prelim

Provide proofs for all statements, citing any theorems that may be needed.

In the following, \mathbb{Z} denotes the ring of integers. We write \mathbb{Z}_n for $\mathbb{Z}/n\mathbb{Z}$.

June 2007

- 1. Let C be a cyclic group of order 6. Find necessary and sufficient conditions on a group G in order that $C \times G$ be a cyclic group.
- 2. Let R be a non-zero ring containing $1 \neq 0$ such that the function $r \mapsto r^2$ from R to R is a homomorphism of rings. Prove that R is a commutative ring of characteristic 2.
- 3. Prove that the group of automorphisms of the abelian group $\mathbb{Z}_3 \times \mathbb{Z}$ has 12 elements.
- 4. Precisely state the Sylow Theorems.

Let G be a group of order 105.

Let $n_p(G)$ denote the number of p-Sylow subgroups of G as usual.

For each prime p less than 10 determine possible values of $n_p(G)$ and the corresponding estimate of number of elements of order p in G.

Using these calculations or otherwise prove that G cannot be simple.

- 5. Let $k \subset L$ be a Galois extension where |Gal(L/k)| = 75.
 - (a) Prove that there is a unique field F with $k \subset F \subset L$ such that [F:k] = 3.
 - (b) Prove that the field F constructed above is a Galois extension of k.

Please turn over.

- 6. Let V be a 3-dimensional vector space over a field k. Assume that you have three linear transformations f, g, h from V to k with the following properties.
 - There is $u \in V$ such that f(u) = 1, g(u) = h(u) = 0.
 - There is $v \in V$ such that g(v) = h(v) = 1.
 - There is $w \in V$ such that g(w) = 2, h(w) = 3.

Define a linear transformation from V to k^3 by $L(t) = \begin{pmatrix} f(t) \\ g(t) \\ h(t) \end{pmatrix}$.

Answer the following:

- (a) Determine if L is surjective.
- (b) Determine if L is injective.
- (c) Determine $Ker(f) \cap Ker(g) \cap Ker(h)$.
- 7. Consider the polynomial $X^5 2$ over \mathbb{Z}_{11} and let $R = \mathbb{Z}_{11}[X]/(X^5 2)$. As usual, identify \mathbb{Z}_{11} with its image in R.

Define the ring homomorphism $\sigma: R \to R$ by $\sigma(t) = t^{11}$ for all $t \in R$.

- (a) Determine the order of σ (i.e. the smallest *n* such that $\sigma^n = Id$).
- (b) Using the above or otherwise, argue that R is a field.
- (c) Determine the Galois group of R over \mathbb{Z}_{11} .
- 8. Give the precise definition of a prime ideal and a maximal ideal in a commutative ring T with $1 \neq 0$.

Let $R = \mathbb{Z}[X]$.

- (a) Determine with proof if $I = (X^4 + 2, X^2 + 1) \subset R$ is prime or maximal or neither.
- (b) Determine with proof if $J = (X^4 + X, X^2 + 1) \subset R$ is prime or maximal or neither.